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How River Rocks Round: Resolving the Shape-Size Paradox

Abstract
River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and
rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced
abrasion; however many researchers argue that the contribution of abrasion to downstream fining is
negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change
apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively
that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-
separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape
becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains
convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling
discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history
of a river rock.
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Abstract

River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where
pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many
researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox:
downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory
experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a
consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis
dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the
particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling
discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.
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Introduction

Transport of pebbles in a stream causes them to collide and rub

against one another and the stream bed, and the resulting abrasion

produces the familiar smooth and rounded shape of river rocks.

Pebble shape evolution due to abrasion has been a topic of study

since Aristotle [1], yet there are few quantitative experiments and

even fewer theoretical predictions. There are important conse-

quences of the abrasion process: mass loss alters pebble mobility

and hence can influence the form and evolution of a river profile

[2,3]; abrasion produces sand and silt [3–6] that is deposited in

downstream channels, floodplains and the ocean; and the degree

of rounding observed in pebbles of fossilized stream beds is used to

infer ancient river flow conditions [7]. Sternberg [8] was the first

to report the now well-known result that pebble size decreases

exponentially with distance downstream, a phenomenon he

attributed to abrasion. Since that time, controversy has ensued

regarding the importance of abrasion versus size-selective sorting

in diminution of particle size [5].

The emerging consensus has been that abrasion rates reported

from laboratory experiments [3–5,9–11] are too low to account for

the downstream fining observed in natural rivers [12–14];

however, the few studies conducted with more energetic collisions

– representative of steep river environments – reported signifi-

cantly higher abrasion rates [3,11]. Other experiments have

shown that size-selective sorting – in which small particles travel

farther downstream than large particles – alone is sufficient to

explain fining trends observed in the field [15,16]. Herein lies a

paradox: there is clear evidence for significant mass loss from

abrasion expressed in pebble shape, while pebble size trends are

interpreted to suggest that mass loss from abrasion is negligible.

However, most field studies are not directly comparable to

laboratory results; the former typically measure the length of only

one pebble axis, while the latter report mass loss [5]. As pointed

out by several researchers [4–5], rounding of a cube to an

inscribed sphere would reduce mass to p/6 of its original value

while producing no change in measured axis lengths. These

authors concluded that the importance of abrasion may be

significantly underestimated by field studies. Clearly, shape must

be explicitly considered when assessing the contribution of

abrasion to downstream fining of sediments [17]. Several recent

experiments that examined shape evolution under abrasion

[18,19] provided qualitative confirmation of geometric models

[20–22], which predict that regions of high curvature are

preferentially eroded. Building on this work, we present the first

quantitative test of the curvature-driven abrasion model originally

proposed by Firey [20], using laboratory experiments and a

discrete chopping model. Experiments show unequivocally that

abrasion occurs in two phases depending on particle shape. This

two-phase behavior emerges spontaneously from the both the

continuous-Firey and discrete-chopping models.

Curvature-driven abrasion: background and theory
For simplicity we focus in this study on the limiting case of a

pebble colliding with a flat plane (or alternatively, striking the

surface of an infinitely large abrader), which could approximate

the situation of a cobble on a smooth bedrock river bed. To further

clarify the controls of shape on abrasion, our experiments and

models begin with cuboid particles. Abrasion is assumed to be
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isotropic; that is, all collision directions are equally probable. The

geometric control of curvature in this situation is intuitive: areas

having positive curvature protrude from the pebble and thus will

be abraded (Fig. 1a). On the other hand, areas of non-positive

curvature will not impact the plane and therefore won’t abrade.

We may qualitatively anticipate two phases of abrasion, where

high-curvature regions are first removed and then the rounded

pebble slowly reduces its size. This intuitive picture has been

confirmed qualitatively by experiment [4,5,10,18].

In order to mathematically model abrasion and compare to

experiments, a precise and parsimonious description of pebble

shape is required. Based on the concept of the convex hull – the

smallest convex body containing the original (non convex) shape –

we introduce the surface convexity index b~AC=AH , 0ƒbƒ1,

where AC is the area of the convex regions and AH is the total area

of the convex hull. (The previously-derived volume convexity

index [23] is constant for our situation, since abrading cuboids

always exhibit non-negative curvature; it is therefore not

considered here). We set a§b§c as the lengths of the principal

axes of the pebble (Fig. 2), where the ratios of the major axes

y1~c=a and y2~b=a are useful additional shape parameters [24].

Shape parameters that provide further information, and allow

comparison to previous experimental and theoretical work, are: the

Wadell sphericity, r [25]; and the exponent n corresponding to the

best-fitting superellipsoid, given by x=að Þnz y=bð Þnz z=cð Þn~1.

The anticipated two phases of abrasion may now be formally

defined: (I) the polyhedral (non-convex) phase with bv1 and

constant y1 and y2; and (II) the smooth (convex) phase with b~1 and

non-constant axis ratios (Fig. 2).

Firey [20] derived a geometric partial differential equation

(PDE) to model shape evolution of a convex particle abraded by

repeated collisions with an infinitely large abrader (i.e., a flat

plane). In this model, local abrasion occurs in the direction normal

to the surface at a speed v that is proportional to the Gaussian

curvature K:

v~gK : ð1Þ

Bloore [21] generalized this model to accommodate finite-size

abraders; in three dimensions (3D) the evolution equation

becomes:

v~1z2fHzgK ð2Þ

where H is the mean curvature, and f and g are the integrated

mean curvature and surface area of the abrader, respectively [26].

Note that in the limit of a very large abrader, Eq. 2 reduces to Eq.

1 and the limiting geometry is a sphere. In the limit of very small

abraders, Eq.2 reduces to parallel flow with constant speed; shapes

move away from the sphere and the limiting geometries have flat

faces and sharp edges [30]. Friction from sliding may also

contribute to surface-parallel erosion, preventing abrading pebbles

from converging to a spherical shape. For the general case (f,g.0)

normal- and parallel-flow effects compete; however, surface-

normal abrasion dominates for generic collision processes

[21,29]. Our experiments approximate a series of collisions with

a very large object (drum), thus we expect that Eq. 1 is adequate to

describe pebble abrasion. However, we implement a numerical

solution to the general Eq. 2 to test this assumption and the ability

of this curvature-driven model to reproduce the two-phase

abrasion observed in experiments.

Results

We performed a series of four laboratory experiments in which

single cuboids composed of oolitic limestone (initial size [mm]

a0 = 70.860.8, b0 = 60.760.7, c0 = 50.661.2; initial volume

V0 = 217,456610000 mm3) were abraded in a 1-m diameter

rotating drum, to simulate collision of a pebble with an infinitely

large abrader. A paddle in the drum lifted and dropped the

particles once per rotation, thus preventing friction-induced

abrasion from sliding. At specified rotation intervals we imaged

each face of the pebble, and measured the three principal axis

lengths plus the mass (Figure 3; see Methods). Experiments

produced identical exponential declines in pebble mass with time

(number of rotations) (Fig. 4f), consistent with expectations from

previous experiments [3–5,10] that abrasion rate is proportional to

kinetic energy of impact. To facilitate direct comparison of

experimental results to geometric modeling, we assessed shape

evolution as a function of pebble volume. A striking result is the

clear emergence of the anticipated Phases I and II of abrasion

(Fig. 4). This is most clearly expressed in the axis ratios (Fig. 4a, b),

which were constant over the interval V0$V.140,000 mm3

(Phase I) but grew toward y1~y2?1as volume was further

reduced (Phase II). Convexity increased over the same interval

indicating rounding; however it became constant (b<1) for

V,140,000 mm3 (Fig 4c). We also observed that the evolution

of Wadell sphericity, r, tracked b (Fig. 4d), whereas n rapidly

dropped toward n?2 (Phase I) and then remained at n = con-

stant<2 (Phase II), the latter corresponding to ellipsoidal shapes

(Fig. 4e). These data provide a benchmark for testing the

geometric abrasion models.

Two complementary modeling approaches were undertaken to

examine 3D pebble abrasion under conditions simulating the

laboratory experiments. First, we modeled surface evolution of a

cuboid by numerically integrating the PDE Eq. 2 using a standard

Figure 1. Definition sketch. (a) 2D schematic of the physical situation studied, showing an abrading cuboid colliding with a flat plane. Zone of
positive curvature on the colliding corner is highlighted with arrows indicating surface-normal abrasion. (b) Three scenarios of the chopping model:
Vertex chopping (Event A) corresponding to Gaussian-curvature-driven abrasion, edge chopping (Event B) corresponding to Mean-Curvature-driven
abrasion, and face chopping (Event C) corresponding to uniform (Eikonal) abrasion.
doi:10.1371/journal.pone.0088657.g001

How River Rocks Round
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level-set method [27,28] (see Methods), with coefficients chosen to

match the experimental data. The second approach involved

implementing a stochastic, discrete-event chopping model introduced

in [22]. For each collision, a prescribed volume (selected from a

lognormal distribution) is removed from the pebble by randomly

picking a collision direction and intersecting the pebble surface

with a plane. Three types of events can occur (Fig. 1): (A) a vertex

is chopped with an arbitrary plane and a polyhedron gains a new

facet, with probability p (similar to Gaussian curvature flow); (B) an

edge is chopped with a plane parallel to that edge and a

polyhedron gains a new facet, with probability q (like mean

curvature flow); and (C) a facet is shifted inward with probability

1{p{q(realizing uniform flow; Fig. 1b; see Methods). A higher

Gaussian curvature (p), for example, would lead to a faster

convergence to a sphere. The average surface abrasion rate w over

many collisions in the chopping model exhibits behavior

convergent with Eq. 2:

w~ 1{p{qð ÞzqHzpK ð3Þ

Two-phase abrasion emerges spontaneously from both the level-

set and chopping models (Fig. 4), with the evolution of all shape

parameters in good agreement with experiments. The level-set

method produces a smooth trend, indicative of its idealized

continuous representation of collisions, while the chopping model

exhibits stochastic fluctuations similar to the experiments. We

found that both models achieved an optimal fit to the data with

pure Gaussian curvature flow (p~1 and q~1 for Eq. 3); i.e.,

Firey’s model (Eq. 1). Phase I shows a sharp increase in convexity

b and constant axis ratios, while Phase II consists of b = constant<1

and y1 and y2 increasing linearly with decreasing volume. The

transition from Phase I to II in the models occurs for the same

volume as observed in experiments. We also observed a sharp

transition in the evolution of the exponent n of the fitted

Figure 2. Two-phase abrasion illustration. The 2D schematic shows two well-separated phases emerging spontaneously from Gaussian-
curvature-driven abrasion: In Phase I edges abrade but axis ratios remain constant; in Phase II, axis ratios evolve towards the sphere. Accompanying
perspective images are topographic laser scans that illustrate the two phases in 3D; they were performed for a separate experiment with a smaller
cuboid having similar axis ratios.
doi:10.1371/journal.pone.0088657.g002

Figure 3. Experimental images of abrasion. Three rows correspond to three orthogonal views of the specimen, and columns show time
evolution in terms of number of drum rotations. Separation of Phases I and II can be observed by visual inspection.
doi:10.1371/journal.pone.0088657.g003

How River Rocks Round
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superellipsoid: Phase I showed a fast drop of n while Phase II

exhibited almost constant n&2 (Fig. 4).

Results for a cuboid have been presented for simplicity;

however, the approach may be generalized to arbitrary shapes.

Doing so reveals that the phenomenon of two-phase abrasion is

robust. As an example, we use the chopping model [22] to

simulate the evolution of a tetrahedron subject to abrasion from a

Gaussian flow. As with the cuboid, convexity b increases with

decreasing pebble volume and, at b = constant<1, the pebble

reaches Phase II. One difference, however, is that the transition is

less abrupt compared to cuboids (Fig. 5). For all shapes, the

transition in phases coincides with the complete removal of the

original facets from the polyhedron. This same phenomenon was

also observed in Kuenen’s experiments [10] of a cuboid rolling

over a fixed pebbly bottom, driven by a water current: ‘‘Up to the

very last moment before a cube is rounded to a spherical shape, the untouched

original faces can be recognized, and the diameter of the sphere is equal to the

edge of the original cube to within a few tenths of a millimeter.’’ Thus, it

appears that two-phase abrasion occurs even when the assumption

of a flat plane is relaxed. Theory predicts that, even in the case of

mutually-abrading and co-evolving pebbles, the curvature terms in

Eq. 2 will dominate the PDE [29,30]. Tumbling mill experiments

with multi-pebble collisions [4] provide qualitative support for

two-phase abrasion.

Discussion and Conclusions

A geometric model that prescribes abrasion rate simply as a

function of local curvature (Eq. 1) shows that any initially-

polyhedral particle will exhibit two phases of abrasion. Remark-

ably, the simple Gaussian flow description not only correctly

predicts two distinct, well-separated phases of pebble shape

evolution, but is also sufficient to quantitatively reproduce the

shape evolution of a real abrading pebble. The differences in the

evolution of b are due to the fact that, in our code, the abraded

volume does not depend on the local geometry of the polyhedron,

see Methods. The governing PDE (Eq. 1), obtained as the result of

averaging over discrete collisions, is of generalized parabolic type

(its linearized version is parabolic), and its qualitative behavior is

perhaps best understood via the well-known heat equation [31,32].

In the analytical heat equation, heat from a discrete source

propagates to the full domain at infinite speed, a phenomenon

known as ‘‘instant smoothing’’. In our model, Gaussian curvature

is analogous to heat. While instant action is obviously an

unphysical artifact of the linearized PDE, it certainly signals a

short but intensive burst in shape evolution – both in the original

physical process and in its direct, discrete-event based simulations

– and this burst corresponds to Phase I in our model. The

mathematical essence of this phenomenon – in the context of the

fully nonlinear PDE Eq.1 – was first described by Hamilton [33],

and it would be of prime interest for future research to compare

the timescale of Phase I predicted by Eq. 1 to the timescale

predicted by the discrete collisional model and the experiments.

Figure 4. Comparison of experimental and numerical results. (a–e) Evolution of shape parameters versus volume, V. Shown are: axis ratios (a)
y1 and (b) y2, (c) convexity index b, (d) Wadell sphericity, r, and (e) superellipsoid exponent, n. (f) Evolution of V versus the rotation number (rot), a
proxy for time. Gray line: experimental data. Black solid line: level-set method approximation of the PDE (Eq. 2). Dashed line: chopping model
approximation (Eq. 3). Best fit coefficients correspond to pure Gaussian flow. Note abrupt change for all shape parameters (a–e) at transition from
Phase I to Phase II, shown with vertical dashed line. Pebble volume exhibits no abrupt change through time (f); the fitted exponential trend is
identical in Phase I and Phase II. Data used to generate this figure are contained in File S1.
doi:10.1371/journal.pone.0088657.g004

How River Rocks Round

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88657



We may make some inference about the duration of Phase I

from the physical system. While axis ratios and shape parameters

show a marked jump at the phase boundary, volume diminution

rate is not sensitive to the phase transition and can be well

approximated by a single exponential curve (Fig. 4). ‘‘Sternberg’s

Law’’ [8], which predicts an exponential decay of pebble size with

downstream distance along a river (x), is typically interpreted in

terms of particle diameter; i.e., a xð Þ~a0e{ax. According to our

findings pebble diameter is constant in Phase I, so this law is only

valid in Phase II. Since pebble shape changes rapidly in Phase I,

one would expect that the volumetric version of Sternberg’s Law –

i.e., V xð Þ~V0e{3ax – is also only valid in Phase II. However,

both our computations and experiments indicate that there is only

a very small change in the exponent at the phase transition. This

leads to an interesting generalization of Sternberg’s Law: Volume

evolution – but not diameter – may be approximated by a single

exponential function throughout the entire abrasion process.

Based on this observation we may estimate the length of Phase I in

fluvial environments in terms of river length x [km], using existing

data on size diminution in Phase II. According to [13], abrasion-

dominated rivers typically exhibit a,0.03; in terms of volume loss,

Sternberg’s Law is then V xð Þ~V0e{3ax. Based on our experi-

ments and computations, we can constrain the minimum volume

loss DV in Phase I as DV.0.1V0; the precise volume ratio depends

on initial pebble shape. Using this value and an upper estimate of

a = 0.03 yields a minimal length for Phase I abrasion along the

river, x,1 km. This is in fair agreement with the few quantitative

field and experimental studies of shape, which report that rapid

rounding of pebble edges occurs within the ‘‘first few kilometers’’

of a stream [4,10,34]. Converting this distance to a timescale

would require detailed knowledge of pebble transport and burial

statistics in a river, which is beyond the scope of the present work

[see 2]. We can however identify qualitative effects that may

prolong Phase I compared to our single-particle, friction-free drum

experiments: (a) Friction-dominated abrasion, in which flat areas

are subject to sliding friction, preserve their flatness [29]; (b) small

abraders cause the first (constant) term in Eq. 2 to dominate,

causing flattening of faces in a manner similar to friction; and (c)

collective abrasion, where the coefficients f and g will co-evolve with

the abraded particle [29,35], and the constant term will initially

play a key role [36]. We also note that, in nature, even well-

rounded pebbles are seldom spherical; non-spherical limiting

shapes are predicted in models that combine collisional and

frictional abrasion [29,35]. Finally, it should be clear that Eq. 2

does not model fragmentation or crushing of pebbles. This occurs

most frequently in the energetic upper reaches of rivers, and has

an effect opposite of abrasional smoothing [3,11].

An important result from our work is that effective particle

‘‘size’’, as typically measured by axis lengths, is constant during

Phase I abrasion – even though up to half of pebble mass is lost in

this Phase – as the shape evolves toward that of an inscribed

ellipsoid. In our experiments, Phase II abrasion is driving the

particles towards the sphere; in a more general setting, under

mutual abrasion of particles also subject to friction and size-

selective transport, Phase II abrasion may result in the emergence

of dominant axis ratios corresponding to non-spherical, ellipsoidal

shapes [29,36]. In nature, the rocks supplied from valley walls to a

stream are typically very angular. Because of the common

assumption that rapid rounding occurs in the first few kilometers

of downstream transport [4,10], researchers have selectively

neglected this effect in models and experiments [2,3]. In addition,

virtually all field studies measure pebble diameters – rather than

masses – to infer downstream diminution rates [5]. Both situations

implicitly assume that Phase II abrasion alone is operative. Our

results suggest that one may explicitly delineate where the

transition from Phase I to II occurs in a river profile (or a

laboratory experiment), by determining where (when) the average

pebble surface convexity achieves a constant value close to 1. Axis

ratio evolution in Phase II is predicted by the discretized version of

Eq. 2, the so-called box equations [29], which allow determination of

whether or not abrasion contributes to downstream fining for

Phase II.

The extent to which these experimental and modeling results

may be extended to the field is uncertain, considering the

complexity of natural sediment transport and the heterogeneity

of pebble material properties. Our findings are most relevant to

the situation of isolated cobbles colliding with a bedrock river

bottom, but we expect that Phase I abrasion can be extended to

the case of numerous cobbles colliding with each other.

Identification of two-phase abrasion serves to organize existing

Figure 5. Shape evolution of a tetrahedron under the purely Gaussian chopping model in Eq. 3 with p = 1. (a) Initial facets are shown in
red; the transition to Phase II abrasion occurs when these facets have been entirely removed. (b) As with the cuboid, surface convexity b increases
during Phase I and stabilizes at b<1 in Phase II.
doi:10.1371/journal.pone.0088657.g005
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field and laboratory data. It is clear that abrasion should

contribute substantially to pebble mass loss and the production

of fine sediment in a river (Phase I), even if it may be subordinate

to size-selective sorting in driving downstream decreases in pebble

diameter (Phase II). Two-phase abrasion resolves the shape-size

paradox. Explicit accounting of shape in future abrasion studies

will allow for a better understanding of the contributions of other

factors. Future work could combine shape evolution with a

mechanical abrasion model that considers collision energy and

material properties [37,38], and explicitly model multi-particle

collisions, to assess the robustness of our reported results.

Constraining the kinematics of the abrasion process (coefficient

g) might also allow one to infer a pebble’s age from its shape by

forward modeling of Eq. 1 – if one can reasonably assume an

initial condition – similar to morphometric dating commonly

applied to hillslope scarps using the diffusion equation [39]. Such

work could then serve to provide more quantitative bounds on past

stream flows and climate conditions associated with river deposits

on Earth and other planets. The recent discovery of rounded

pebbles – apparently in Phase II of their shape evolution – in a

rock outcrop on Mars, for example, was used to infer that an

ancient river had abraded sediments during transport over

kilometers [40,41]. More generally, the curvature-driven flow

model connects the shape evolution of pebbles to a much broader

class of problems governed by surface diffusion, such as the

Khardar-Parisi-Zhang equation for surface growth [42]. This

mathematical connection may be exploited to model pebble shape

evolution under a range of boundary and initial conditions, by

making use of existing numerical and analytical solutions.

Materials and Methods

Laboratory experiments
We performed four laboratory experiments in which single

cuboids composed of oolitic limestone (well sorted calcarenite, for

detailed lithological description see [43]), were abraded in a 1-m

diameter, rotating ‘‘Los Angeles’’ drum. At specified rotation

intervals (0,25,50…500, 550, 600) we imaged the particles from

three orthogonal directions, and measured the corresponding

dimensions (principal axes) and mass. Faces were marked with ink

for repeated identification. Volume was computed from mass

assuming homogeneous sample density. High sample porosity led

to rapid erosion, such that a cuboid evolved to a sphere in

approximately one day.

Level set method
Here we simulated surface evolution (Eq. 2) under the linear

combination of the Gaussian and the mean curvature flows, using

the classical level set method [44]. Simulations used the Matlab

Toolbox for Level Set Methods by Mitchell [27,28]. Note that

curvature-dependent flows require the computation of the second

gradients of the surface; thus a polyhedron as an initial shape

represents a singularity. In our numerical investigations we found

that a superellipsoid with n,20 is needed to start the computation.

Chopping model
The chopping model is a discrete, stochastic algorithm where a

sequence of local collisional events leads to shape evolution; it was

originally presented by [22], where details can be found. For an

alternative planar model see [45]. A particle is represented by the

polyhedron P and abrasion results due to discrete collisions by

another polyhedron P*. For each collision a volume D with

lognormal distribution LogNorm(D0,s1), mean value D0 (depend-

ing on the volume of P), and variation s1 is removed by

intersecting P with a plane having random orientation. Numer-

ically, this step is carried out by a polyhedron splitting code

embedded in an inverse iteration aimed to recover the prescribed

volume D. We remark that in the current version of our code D
does not depend on the edge angles and thus the abraded volume

is over-estimated for small edge angles. This is manifested in the

differences on Figure 4c showing the evolution of the surface

convexity index b; initially, with small edge angles close to 90

degrees, the computation predicts faster-than-realistic abrasion.

The three types of collision events, shown in Fig. 1b, are modeled

assuming that the directional distribution of collisions is uniform,

in accordance with the geometric assumptions underlying the

averaged PDE Eq. 2. (A) The impactor P* is large and flat;

collision occurs between a face of P* and a vertex of P. Impact

location on P is selected randomly based on solid angles of the

surface normal (the integrated Gaussian curvature). In this case

sharp vertices are selected with high probability, and a vertex of P

is chopped off and replaced by a small face, normal to the

randomly selected direction. (B) The impactor P* is large and thin;

collision occurs between an edge of P* and an edge of P. Impact

location on P is selected randomly based on total product of edge

length and edge angle (the integrated mean curvature). In this case

sharp and long edges are selected with high probability, and an

edge of S is chopped off and replaced by a small, thin face, the

normal of which is chosen uniformly in the range defined by the

normals of the adjacent faces. (C) The impactor P* is much smaller

than the object; collision occurs between a vertex of P* and a face

of P. Impact location on P is selected randomly based on surface

area. For this case large faces are selected with high probability,

and the selected face of P retreats parallel to itself. This component

is not relevant for the experiments examined here but is included

for completeness. The average abrasion rate over many collisions

is given by Eq. 3.

Supporting Information

File S1 An Excel spreadsheet file that contains all data
on mass and shape evolution, from drum experiments
and numerical simulations, that were used to generate
Figure 4.
(XLS)
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