24 research outputs found

    Thermoelectric and transport properties of Delafossite CuCrO2:Mg thin films prepared by RF magnetron sputtering

    Get PDF
    P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 ◩C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 ◩C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 ◩C. At a measurement temperature of 40 ◩C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 ”V·K−1. The calculated power factor (PF = σS 2) was 6 ”W·m−1·K−2 at 40 ◩C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 ”W·m−1·K−2 at 220 ◩C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed

    Influence of thickness and microstructure on thermoelectric properties of Mg-doped CuCrO2 delafossite thin films deposited by RF-magnetron sputtering

    Get PDF
    Thermoelectric thin films are of great interest to microelectronic devices and miniaturized temperature sensors. In this article, we have studied the influence of film thickness on the electrical and thermoelectric properties of Mg-doped CuCrO2 delafossite material (CuCrO2:Mg), a delafossite-type oxide. For this purpose, a serie of CuCr0.97Mg0.03O2 thin films with various thicknesses (25, 50, 100, 200, 300, 400 and 600 nm) have been deposited by Radio Frequency (RF) magnetron sputtering. The as-deposited films were annealed at 550 °C under vacuum to obtain well crystallized delafossite phase. Grazing incidence X-ray diffraction patterns indicated that samples had pure delafossite structure. The atomic force microscope observations revealed the increase of the grain size with increasing thickness. The electrical and thermoelectric properties are characterized in temperature ranging from 40 to 220 °C and they were thickness dependent. The thickness dependency of the Seebeck coefficient was not expected and indicated that the carrier density changes with thickness below 100 nm. The variation of the film resistivity below 100 nm thickness was explained by both the change of the carrier density and the potential barrier addition due to small grain size. Using the electrical conductivity, the polaron activation energy (Eσp = 0.131 eV for 100 nm thick sample) was determined and its variation indicated that the stress/strain effect in the film with increasing thickness impacts the mobility. Moreover, the unexpected increase of the resistivity between 400 and 600 nm was also explained by the micro-cracks formation. The electrical and thermoelectric measurements showed a degenerated hopping semi-conductor behavior for the whole thicknesses. The highest electrical conductivity (1.7 S·cm−1 at 40 °C) was obtained for 100 nm thick film which presented a Seebeck coefficient of +307 ”V·K−1 at 40 °C. We report maximum power factor of 16 ”W·m−1·K−2 at 40 °C for the optimum thickness of 100 nm, which reached 59 ”W·m−1·K−2 at 200 °C. The above results were explained in terms of microstructure and stress/strain effect

    Determination of modified figure of merit validity for thermoelectric thin films with heat transfer model: Case of CuCrO2:Mg deposited on fused silica

    Get PDF
    Thermoelectric performance of a material is determined using a figure of merit (FOM) determined as ZT (ZT = σS2T/Îș where σ is the electrical conductivity, S is the Seebeck coefficient, Îș is the thermal conductivity, and T is the temperature). In the case of a thin film, it is normal in the first approach to consider calculating the FOM by using the thermal conductivity of the film. However, both the thermal influence of the substrate and the emissivity of the film must also be taken into account. In the present work, the heat transfer model is used in order to study the influence of the thermal conductivity, the thickness, and the emissivity of the film on the thermal gradient of the stack (substrate + thin film). The limits of these three parameters are determined in order to have the temperature variation due to the presence of the film compared to the substrate alone that remains less than 1%. Under these limits, the thermal conductivity of the substrate can be taken into account instead of the thermal conductivity of the thin film, and a modified FOM (Z’T) can be calculated. The present study leads to the determination of the validity of modified ZT. In the case of CuCrO2:Mg thin films, the model shows that the use of Z’T is valid. The calculated value of Z’T with the measured Seebeck coefficient and the electrical conductivity as a function of the temperature for 100 nm thick films and the temperature dependent thermal conductivity taken from the literature reached 0.02 at 210 °C. A thermoelectric module made with this material showed 10.6 nW when 220 °C is applied at the hot side

    Delafossite type Mg doped CuCr1-xFexO2 (0 <= x <= 1) thin films deposited by radio frequency sputtering for thermoelectric properties

    No full text
    L'objectif de cette thĂšse Ă©tait d'Ă©tudier les propriĂ©tĂ©s thermoĂ©lectriques de couches minces d'oxyde de type delafossite dĂ©posĂ©es par pulvĂ©risation cathodique magnĂ©tron. Pour cela, les oxydes CuCrO2:3%Mg, CuFeO2:3%Mg et CuCr0,84Fe0,16O2:3%Mg ont Ă©tĂ© dĂ©posĂ©s avec diffĂ©rentes Ă©paisseurs sur des substrats de silice amorphe puis traitĂ©s sous vide Ă  diffĂ©rentes tempĂ©ratures afin d'obtenir la structure delafossite. La tempĂ©rature de traitement thermique optimale permettant d'obtenir les meilleures propriĂ©tĂ©s thermoĂ©lectriques est de 550°C pour CuCrO2:Mg et CuCr0,84Fe0,16O2:Mg et de 700°C pour CuFeO2:Mg. L'Ă©paisseur optimale des couches minces est de 100 nm pour la delafossite au chrome et de 300 nm pour celle au fer. La conductivitĂ© Ă©lectrique des couches augmente avec la tempĂ©rature tout en conservant un coefficient Seebeck positif et constant pour les trois compositions donnĂ©es impliquant un mĂ©canisme par saut de polarons. Le facteur de puissance des couches minces CuCrO2:Mg, CuFeO2:Mg et CuCr0,84Fe0,16O2:Mg dont l'Ă©paisseur et la tempĂ©rature de recuit ont Ă©tĂ© optimisĂ©es atteint respectivement 59 ”W.m-1K-2, 84 ”W.m-1K-2 et 36 ”W.m-1K-2 Ă  200°C. Les Ă©tudes microstructurales et structurales ont permis de comprendre la variation du facteur de puissance avec la tempĂ©rature de recuit et l'Ă©paisseur. Elles ont notamment montrĂ© que la dĂ©croissance de la conductivitĂ© Ă©lectrique des films traitĂ©s Ă  haute tempĂ©rature est due Ă  des phĂ©nomĂšnes concomitants de fissuration de la couche et de sĂ©grĂ©gation du magnĂ©sium. Une Ă©tude thermique utilisant la modĂ©lisation avec la mĂ©thode des Ă©lĂ©ments finis a permis de dĂ©montrer que dans le cas des couches minces, la conductivitĂ© thermique du substrat peut se substituer Ă  celle du film dans le calcul de facteur de mĂ©rite. La validitĂ© du facteur de mĂ©rite modifiĂ© ((ZT)* = S2σ/ksubstrat) a Ă©tĂ© Ă©noncĂ©e en fonction de l'Ă©paisseur, l'Ă©missivitĂ© et la conductivitĂ© thermique de la couche mince. L'utilisation de la mĂ©thode 3ω a permis de dĂ©terminer une valeur de conductivitĂ© thermique de 4,82 W.m-1k-1 Ă  25°C pour le film mince CuFeO2:Mg, qui se situe dans le domaine de validitĂ© Ă©tabli pour l'utilisation de (ZT)*.[...]The aim of this thesis was to study the thermoelectric properties of delafossite type oxides thin-films deposited by RF-magnetron sputtering. Several thicknesses of CuCrO2:3%Mg, CuFeO2:3%Mg and CuCr0,84Fe0,16O2:3%Mg oxides were deposited on fused silica then annealed under vacuum at different temperatures in order to obtain delafossite structure. The optimal annealing temperature which leads to an acceptable thermoelectric properties is 550°C for CuCrO2:Mg and CuCr0,84Fe0,16O2:Mg thin films and 700°C for CuFeO2:Mg thin film. The optimal thickness is 100 nm for the delafossite with chrome and 300 nm for delafossite with iron. The electrical conductivity of the studied thin films increases with the temperature, while maintaining a positive and constant Seebeck coefficient for the three given compositions that implies a hopping mechanism. The power factor of CuCrO2:Mg, CuFeO2:Mg and CuCr0,84Fe0,16O2:Mg thin films for which the annealing temperature and the thickness were optimized, reached 59 ”W.m-1K-2, 84 ”W.m-1K-2 and 36 ”W.m-1K-2 respectively at 200°C. The microstructural and structural analysis allowed to understand the variation of the power factor with the annealing temperatures and the thicknesses. In particular, they showed that the decrease in the electrical conductivity of the thin films annealed at high temperature is due to concomitant phenomena of film cracking and magnesium segregation. A thermal analysis using modeling with the finite element method has demonstrated that in the case of thin films, the thermal conductivity of the substrate can be substituted for the thermal conductivity of the film in the calculation of figure of merit. The validity of the modified figure of merit ((ZT)* = S2σ/ksubstrate) was given as a function of the film thickness, emissivity and thermal conductivity. The thermal conductivity of CuFeO2:Mg was measured using the 3ω method and it was 4.82 W.m-1k-1 at 25°C which is within the range of validity established for the use of (ZT)*[...

    Thermoelectric and Transport Properties of Delafossite CuCrO2:Mg Thin Films Prepared by RF Magnetron Sputtering

    No full text
    P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 ”V·K−1. The calculated power factor (PF = σSÂČ) was 6 ”W·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 ”W·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed

    Etude de couches minces Ă  base de delafossite CuCr 1-x Fe x O 2 (0 ≀ x ≀ 1) dopĂ©es au Mg dĂ©posĂ©es par pulvĂ©risation cathodique radiofrĂ©quence en vue d'optimiser leurs propriĂ©tĂ©s thermoĂ©lectriques

    Get PDF
    The aim of this thesis was to study the thermoelectric properties of delafossite type oxides thin-films deposited by RF-magnetron sputtering.Several thicknesses of CuCrO2:3%Mg, CuFeO2:3%Mg and CuCr0,84Fe0,16O2:3%Mg oxides were deposited on fused silica then annealed under vacuum at different temperatures in order to obtain delafossite structure. The optimal annealing temperature which leads to acceptable thermoelectric properties is 550 °C for CuCrO2:Mg and CuCr0,84Fe0,16O2:Mg thin films and 700 °C for CuFeO2:Mg thin film. The optimal thickness is 100 nm for the delafossite with chrome and 300 nm for delafossite with iron. The electrical conductivity of the studied thin films increases with the temperature, while maintaining a positive and constant Seebeck coefficient for the three given compositions that implies a hopping mechanism.The power factor of CuCrO2:Mg, CuFeO2:Mg and CuCr0,84Fe0,16O2:Mg thin films for which the annealing temperature and the thickness were optimized, reached 59 ”W.m-1K-2, 84 ”W.m- 1K-2 and 36 ”W.m-1K-2 respectively at 200 °C. The microstructural and structural analysis allowed to understand the variation of the power factor with the annealing temperatures and the thicknesses. In particular, they showed that the decrease in the electrical conductivity of the thin films annealed at high temperature is due to concomitant phenomena of film cracking and magnesium segregation.A thermal analysis using modeling with the finite element method has demonstrated that in the case of thin films, the thermal conductivity of the substrate can be substituted for the thermal conductivity of the film in the calculation of figure of merit. The validity of the modified figure of merit ((ZT)* = SÂČs/ksubstrate) was given as a function of the film thickness, emissivity and thermal conductivity. The thermal conductivity of CuFeO2:Mg was measured using the 3? method and it was 4.82 W.m-1k-1 at 25 °C which is within the range of validity established for the use of (ZT)*.Thermoelectric modules based on these delafossite have also been elaborated and studied in this thesis. The uni-leg module made with CuCrO2:Mg thin films showed a maximum power of 10.6 nW for an applied hot side temperature at 220 °C and uncontrolled cold side temperature. Thanks to their stability in temperature and in air, the delafossite oxides thin films are promising candidates for thermoelectric applications in the field of microelectronics as a thermogenerator and specifically in high accuracy temperature measurement devices.L’objectif de cette thĂšse Ă©tait d’étudier les propriĂ©tĂ©s thermoĂ©lectriques de couches minces d’oxyde de type delafossite dĂ©posĂ©es par pulvĂ©risation cathodique magnĂ©tron.Pour cela, les oxydes CuCrO2:3%Mg, CuFeO2:3%Mg et CuCr0,84Fe0,16O2:3%Mg ont Ă©tĂ© dĂ©posĂ©s avec diffĂ©rentes Ă©paisseurs sur des substrats de silice amorphe puis traitĂ©s sous vide Ă  diffĂ©rentes tempĂ©ratures afin d’obtenir la structure delafossite. La tempĂ©rature de traitement thermique optimale permettant d’obtenir les meilleures propriĂ©tĂ©s thermoĂ©lectriques est de 550 °C pour CuCrO2:Mg et CuCr0,84Fe0,16O2:Mg et de 700 °C pour CuFeO2:Mg. L’épaisseur optimale des couches minces est de 100 nm pour la delafossite au chrome et de 300 nm pour celle au fer. La conductivitĂ© Ă©lectrique des couches augmente avec la tempĂ©rature tout en conservant un coefficient Seebeck positif et constant pour les trois compositions donnĂ©es impliquant un mĂ©canisme par saut de polarons. Le facteur de puissance des couches minces CuCrO2:Mg, CuFeO2:Mg et CuCr0,84Fe0,16O2:Mg dont l’épaisseur et la tempĂ©rature de recuit ont Ă©tĂ© optimisĂ©es atteint respectivement 59 ”W.m-1K-2, 84 ”W.m-1K-2 et 36 ”W.m-1K-2 Ă  200 °C. Les Ă©tudes microstructurales et structurales ont permis de comprendre la variation du facteur de puissance avec la tempĂ©rature de recuit et l’épaisseur. Elles ont notamment montrĂ© que la dĂ©croissance de la conductivitĂ© Ă©lectrique des films traitĂ©s Ă  haute tempĂ©rature est due Ă  des phĂ©nomĂšnes concomitants de fissuration de la couche et de sĂ©grĂ©gation du magnĂ©sium. Une Ă©tude thermique utilisant la modĂ©lisation avec la mĂ©thode des Ă©lĂ©ments finis a permis de dĂ©montrer que dans le cas des couches minces, la conductivitĂ© thermique du substrat peut se substituer Ă  celle du film dans le calcul de facteur de mĂ©rite. La validitĂ© du facteur de mĂ©rite modifiĂ© ((ZT)* = SÂČs/ksubstrat) a Ă©tĂ© Ă©noncĂ©e en fonction de l’épaisseur, l’émissivitĂ© et la conductivitĂ© thermique de la couche mince. L’utilisation de la mĂ©thode 3? a permis de dĂ©terminer une valeur de conductivitĂ© thermique de 4,82 W.m-1k-1 Ă  25 °C pour le film mince CuFeO2:Mg, qui se situe dans le domaine de validitĂ© Ă©tabli pour l’utilisation de (ZT)*. Des modules thermoĂ©lectriques Ă  base de ces delafossites ont Ă©galement Ă©tĂ© Ă©laborĂ©s et Ă©tudiĂ©s dans cette thĂšse. Le module « unileg » Ă  base de CuCrO2:Mg a montrĂ© une puissance maximale de 10,6 nW pour une tempĂ©rature du cotĂ© chaud imposĂ©e Ă  220 °C et laissĂ©e libre du cotĂ© froid. Les couches minces d’oxydes delafossite qui sont stables en tempĂ©rature et sous air apparaissent comme fortement prometteuses pour des applications thermoĂ©lectriques, dans le domaine de la microĂ©lectronique en tant que thermo-gĂ©nĂ©rateur mais surtout dans les dispositifs de mesure de tempĂ©rature de haute prĂ©cision

    Etude de couches minces Ă  base de delafossite CuCr1-xFexO2(0 ≀ x ≀ 1) dopĂ©es au Mg dĂ©posĂ©es par pulvĂ©risation cathodique radiofrĂ©quence en vue d'optimiser leurs propriĂ©tĂ©s thermoĂ©lectriques

    No full text
    The aim of this thesis was to study the thermoelectric properties of delafossite type oxides thin-films deposited by RF-magnetron sputtering. Several thicknesses of CuCrO2:3%Mg, CuFeO2:3%Mg and CuCr0,84Fe0,16O2:3%Mg oxides were deposited on fused silica then annealed under vacuum at different temperatures in order to obtain delafossite structure. The optimal annealing temperature which leads to an acceptable thermoelectric properties is 550°C for CuCrO2:Mg and CuCr0,84Fe0,16O2:Mg thin films and 700°C for CuFeO2:Mg thin film. The optimal thickness is 100 nm for the delafossite with chrome and 300 nm for delafossite with iron. The electrical conductivity of the studied thin films increases with the temperature, while maintaining a positive and constant Seebeck coefficient for the three given compositions that implies a hopping mechanism. The power factor of CuCrO2:Mg, CuFeO2:Mg and CuCr0,84Fe0,16O2:Mg thin films for which the annealing temperature and the thickness were optimized, reached 59 ”W.m-1K-2, 84 ”W.m-1K-2 and 36 ”W.m-1K-2 respectively at 200°C. The microstructural and structural analysis allowed to understand the variation of the power factor with the annealing temperatures and the thicknesses. In particular, they showed that the decrease in the electrical conductivity of the thin films annealed at high temperature is due to concomitant phenomena of film cracking and magnesium segregation. A thermal analysis using modeling with the finite element method has demonstrated that in the case of thin films, the thermal conductivity of the substrate can be substituted for the thermal conductivity of the film in the calculation of figure of merit. The validity of the modified figure of merit ((ZT)* = S2σ/ksubstrate) was given as a function of the film thickness, emissivity and thermal conductivity. The thermal conductivity of CuFeO2:Mg was measured using the 3ω method and it was 4.82 W.m-1k-1 at 25°C which is within the range of validity established for the use of (ZT)*[...]L'objectif de cette thĂšse Ă©tait d'Ă©tudier les propriĂ©tĂ©s thermoĂ©lectriques de couches minces d'oxyde de type delafossite dĂ©posĂ©es par pulvĂ©risation cathodique magnĂ©tron. Pour cela, les oxydes CuCrO2:3%Mg, CuFeO2:3%Mg et CuCr0,84Fe0,16O2:3%Mg ont Ă©tĂ© dĂ©posĂ©s avec diffĂ©rentes Ă©paisseurs sur des substrats de silice amorphe puis traitĂ©s sous vide Ă  diffĂ©rentes tempĂ©ratures afin d'obtenir la structure delafossite. La tempĂ©rature de traitement thermique optimale permettant d'obtenir les meilleures propriĂ©tĂ©s thermoĂ©lectriques est de 550°C pour CuCrO2:Mg et CuCr0,84Fe0,16O2:Mg et de 700°C pour CuFeO2:Mg. L'Ă©paisseur optimale des couches minces est de 100 nm pour la delafossite au chrome et de 300 nm pour celle au fer. La conductivitĂ© Ă©lectrique des couches augmente avec la tempĂ©rature tout en conservant un coefficient Seebeck positif et constant pour les trois compositions donnĂ©es impliquant un mĂ©canisme par saut de polarons. Le facteur de puissance des couches minces CuCrO2:Mg, CuFeO2:Mg et CuCr0,84Fe0,16O2:Mg dont l'Ă©paisseur et la tempĂ©rature de recuit ont Ă©tĂ© optimisĂ©es atteint respectivement 59 ”W.m-1K-2, 84 ”W.m-1K-2 et 36 ”W.m-1K-2 Ă  200°C. Les Ă©tudes microstructurales et structurales ont permis de comprendre la variation du facteur de puissance avec la tempĂ©rature de recuit et l'Ă©paisseur. Elles ont notamment montrĂ© que la dĂ©croissance de la conductivitĂ© Ă©lectrique des films traitĂ©s Ă  haute tempĂ©rature est due Ă  des phĂ©nomĂšnes concomitants de fissuration de la couche et de sĂ©grĂ©gation du magnĂ©sium. Une Ă©tude thermique utilisant la modĂ©lisation avec la mĂ©thode des Ă©lĂ©ments finis a permis de dĂ©montrer que dans le cas des couches minces, la conductivitĂ© thermique du substrat peut se substituer Ă  celle du film dans le calcul de facteur de mĂ©rite. La validitĂ© du facteur de mĂ©rite modifiĂ© ((ZT)* = S2σ/ksubstrat) a Ă©tĂ© Ă©noncĂ©e en fonction de l'Ă©paisseur, l'Ă©missivitĂ© et la conductivitĂ© thermique de la couche mince. L'utilisation de la mĂ©thode 3ω a permis de dĂ©terminer une valeur de conductivitĂ© thermique de 4,82 W.m-1k-1 Ă  25°C pour le film mince CuFeO2:Mg, qui se situe dans le domaine de validitĂ© Ă©tabli pour l'utilisation de (ZT)*.[...

    Ga doped ZnO thin films deposited by RF sputtering for NO2 sensing

    No full text
    International audienceGa doped ZnO thin films have been deposited by Radio-Frequency (RF) magnetron sputtering on fused silica substrates. The structural analysis of the n-type sensitive material showed a preferential orientation in the [00l] direction. The microstructure of the thin film indicated an increasing grain size with the increase of the thicknesses. The micro sensor platforms have been fabricated with ZnO:Ga thin film deposited using a reliable stencil mask onto interdigitated electrodes containing micro-hotplates. The as fabricated micro sensor allows to sense sub-ppm concentration (500 ppb) of nitric dioxide. This system reveals promising sensing performance with a sensitivity Rg/Ra up to 75 at low temperature (50 °C)

    Microstructural and transport properties of Mg doped CuFeO2 thin films: A promising material for high accuracy miniaturized temperature sensors based on the Seebeck effect

    No full text
    International audienceDelafossite type Mg doped CuFeO2 thin films have been deposited on fused silica by radio-frequency magnetron sputtering. As-deposited 300 nm thick films have been obtained and post-annealed between 350 and 750 °C under primary vacuum. The delafossite structure appears for the samples annealed above 550 °C. The microstructural analysis showed the presence of cracks and an inhomogeneous distribution of the dopant in the thickness. Only the sample annealed at 700 °C showed CuFeO2 stable phases, lower impurities amount, a high and constant Seebeck coefficient (+416 ±3 ΌV K−1) and good electrical conductivity (1.08 S cm−1 at 25 °C). High accuracy temperature sensors based on the Seebeck effect not only need high Seebeck coefficient without any drift with the temperature, but also a sufficient electrical conductivity and high phase stability. Thanks to its properties and also its low thermal conductivity (4.8 ±0.6 W m−1K−1 at 25 °C) due to the thin film configuration and the polaronic transport, the Mg doped CuFeO2 thin film annealed at 700 °C was found to be a very good p-type material for high accuracy miniaturized temperature measurement sensors based on the Seebeck effect in the medium temperature range
    corecore