184 research outputs found

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Molecular evidence for the presence of malaria vector species a of the Anopheles annularis complex in Sri Lanka

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles annularis s.l</it>. is a wide spread malaria vector in South and Southeast Asia, including Sri Lanka. The taxon <it>An. annularis </it>is a complex of two sibling species viz. A and B, that are differentiated by chromosome banding patterns and ribosomal gene sequences in India. Only species A is reported to be a malaria vector in India while the occurrence of sibling species in Sri Lanka has not been documented previously.</p> <p>Findings</p> <p>Anopheline larvae were collected at a site in the Jaffna district, which lies within the dry zone of Sri Lanka, and reared in the laboratory. Emerged adults were identified using standard keys. DNA sequences of the D3 domain of 28S ribosomal DNA (rDNA) and the internal transcribed spacer-2 (ITS-2) of the morphologically identified <it>An. annularis </it>were determined. BLASTn searches against corresponding <it>An. annularis </it>sequences in GenBank and construction of phylogenetic trees from D3 and ITS-2 rDNA sequences showed that the Sri Lankan specimens, and <it>An. annularis s.l</it>. specimens from several Southeast Asian countries were closely related to species A of the Indian <it>An. annularis </it>complex.</p> <p>Conclusions</p> <p>The results show the presence of the malaria vector <it>An. annularis </it>species A in Sri Lanka and Southeast Asia. Because <it>An. annularis </it>vectors have been long associated with malaria transmission in irrigated agricultural areas in the Sri Lankan dry zone, continued monitoring of <it>An. annularis </it>populations, and their sibling species status, in these areas need to be integral to malaria control and eradication efforts in the island.</p

    Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.

    Get PDF
    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing

    Increasing the potential for malaria elimination by targeting zoophilic vectors

    Get PDF
    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target

    Travel risk, malaria importation and malaria transmission in Zanzibar

    Get PDF
    The prevalence of Plasmodium falciparum malaria in Zanzibar has reached historic lows. Improving control requires quantifying malaria importation rates, identifying high-risk travelers, and assessing onwards transmission

    Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya

    Get PDF
    Studies of the fine-scale spatial epidemiology of malaria consistently identify malaria hotspots, comprising clusters of homesteads at high transmission intensity. These hotspots sustain transmission, and may be targeted by malaria-control programmes. Here we describe the spatial relationship between the location of Anopheles larval sites and human malaria infection in a cohort study of 642 children, aged 1–10-years-old. Our data suggest that proximity to larval sites predict human malaria infection, when homesteads are upwind of larval sites, but not when homesteads are downwind of larval sites. We conclude that following oviposition, female Anophelines fly upwind in search for human hosts and, thus, malaria transmission may be disrupted by targeting vector larval sites in close proximity, and downwind to malaria hotspots

    Mapping and modelling the geographical distribution and environmental limits of podoconiosis in Ethiopia

    Get PDF
    BACKGROUND Ethiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues. METHODOLOGY Our analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008-2010. The integrated mapping used woreda (district) health offices' reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence. PRINCIPAL FINDINGS Data were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2-51.7) million people (i.e. 43.8%; 95% CI: 25.3-64.8% of Ethiopia's national population) lived in areas environmentally suitable for the occurrence of podoconiosis. CONCLUSIONS Podoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale
    • …
    corecore