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Abstract

Background: Anopheles arabiensis is a particularly opportunistic feeder and efficient vector of Plasmodium
falciparum in Africa and may invade areas outside its normal range, including areas separated by expanses of
barren desert. The purpose of this paper is to demonstrate how spatial models can project future irrigated cropland
and potential, new suitable habitat for vectors such as An. arabiensis.

Methods: Two different but complementary spatial models were linked to demonstrate their synergy for assessing
re-invasion potential of An. arabiensis into Upper Egypt as a function of irrigated cropland expansion by 2050. The
first model (The Land Change Modeler) was used to simulate changes in irrigated cropland using a Markov Chain
approach, while the second model (MaxEnt) uses species occurrence points, land cover and other environmental
layers to project probability of species presence. Two basic change scenarios were analysed, one involving a more
conservative business-as-usual (BAU) assumption and second with a high probability of desert-to-cropland
transition (Green Nile) to assess a broad range of potential outcomes by 2050.

Results: The results reveal a difference of 82,000 sq km in potential An. arabiensis range between the BAU and
Green Nile scenarios. The BAU scenario revealed a highly fragmented set of small, potential habitat patches
separated by relatively large distances (maximum distance =64.02 km, mean = 12.72 km, SD=9.92), while the Green
Nile scenario produced a landscape characterized by large patches separated by relatively shorter gaps (maximum
distance =49.38, km, mean=4.51 km, SD =7.89) that may be bridged by the vector.

Conclusions: This study provides a first demonstration of how land change and species distribution models may
be linked to project potential changes in vector habitat distribution and invasion potential. While gaps between
potential habitat patches remained large in the Green Nile scenario, the models reveal large areas of future habitat
connectivity that may facilitate the re-invasion of An. arabiensis from Sudan into Upper Egypt. The methods used
are broadly applicable to other land cover changes as they influence vector distribution, particularly those related
to tropical deforestation and urbanization processes.
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Background

Unintentional introductions of mosquito vectors into
environmentally suitable areas outside their normal
ranges have led to establishment of breeding populations
and subsequent outbreaks of human malaria and other
important mosquito-borne diseases [1-7]. Establishment
of founder populations depends on many variables, in-
cluding abiotic similarity between source and invaded
sites, absence of predators and parasites that may limit
vector populations within their normal ranges, lack of
rigorous control measures within invaded territories and
sufficient sources of blood meals. In addition, mosquito
invasion events have been facilitated by human migra-
tion, global trade, and international travel and tourism
[7,8]. While much recent literature has focused on the
spread of invasive species, such as Aedes aegypti, Aedes
albopictus, Aedes atropalpus that breed in containers,
climate change coupled with ecosystem disturbance may
also favour the spread of various anophelines to areas
where malaria has been eliminated or was previously ab-
sent [5,9]. Specific invasion events associated with not-
able outbreaks of malaria include the long-distance
dispersal of Anopheles gambiae from West Africa to
north-east Brazil in 1930, which over a nine-year period
produced a major increase in human malaria cases hav-
ing an estimated 20-25% death rate [1,6]. Further, in
1943 a major malaria epidemic occurred in Egypt asso-
ciated with the spread of An. arabiensis (a member of
the An. gambiae species complex) from Sudan along the
Nile Valley [1,10]. This particular outbreak produced
some 130,000 deaths within a two-year period until suc-
cessful control and vector elimination measures were
implemented in late 1944 [1]. At that time, the limits of
the infestation were known and confined to irrigated
areas well to the north of the current study area in Asyut
Governorate. This facilitated efficient application of lar-
vicidal agents that were used in the successful eradica-
tion campaign [1].

Although rainfall and temperature exert critical con-
trols over the life cycles of both mosquitoes and Plasmo-
dium, changes in land use and land cover may also
facilitate (or prevent) the spread of malaria vectors [11-
14]. Deforestation in tropical lowland (<500 m a s 1)
environments has received emphasis in the recent litera-
ture, particularly associated with frontier malaria in
Latin America where forest has been converted to pas-
ture or farmland. For example, numerous studies have
established a link between deforestation and abundance
of Anopheles darlingi, which is one of the most import-
ant malaria vectors found near tropical forest fringes in
the Neotropics [12,15-17]. Irrigation in highly seasonal
or arid and semi-arid environments also facilitates estab-
lishment and spread of malaria vectors [13,18,19]. Patz
et al. [13] postulate that the development of irrigation
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and other human-induced changes in surface hydrology
that result in slow-moving water are likely to be more
significant for vector breeding in regions where malaria is
either absent or hypo-endemic, such as in North Africa or
India. Over the past several decades irrigated cropland has
greatly increased in the Middle East and North Africa,
with irrigated area covering an estimated 26 million hec-
tares (ha) in 1998. By 2030 irrigated area in the region is
projected to increase by 25% to meet local and global food
demand [20]. Therefore, it is reasonable that future irriga-
tion development will pose a major risk of malaria out-
breaks as vectors may disperse from source regions to
newly irrigated areas.

Opportunities exist for gaining a more comprehensive
understanding of the interactions between environmen-
tal change and vector invasion potential using different
types of space-time models that can simulate environ-
mental change or species distribution [21,22]. Such
models can take into account key factors that help to in-
crease or isolate vector populations such as climate,
physical barriers or corridors such as large rivers, lakes
or seas, mountains, vegetation type and distance be-
tween suitable habitats [10]. While species distribution
models (SDMs) have provided new insights into areas
where malaria vectors are likely to encounter suitable
habitats, most SDM applications for mapping malaria
vectors have emphasized climate as the principal factor
that controls potential habitat suitability [18,21-25].
However, some SDMs can accommodate land cover in-
formation in discrete form (i.e. land cover classes) and
this creates the possibility to link land change models
(LCMs) with SDMs to map potential vector distribution
driven by anthropogenic changes such as urbanization,
irrigation and deforestation. This study demonstrates
how LCMs and SDMs can be linked to project future
changes in the potential range of An. arabiensis asso-
ciated with expansion of irrigated cropland in the Nile
Valley of Sudan and Upper Egypt.

Anopheles arabiensis was selected as a case study be-
cause authorities at the Ministry of Health in Egypt are
particularly concerned that this efficient vector species
may re-invade Egypt from the Sudan and cause wide-
scale epidemics of Plasmodium falciparum, as it did in
1943. Concern is also justified given the development of
new transportation and water management initiatives in
Northern State, Sudan and downriver within the Nile
Valley in Upper Egypt [10,26]. In addition, agriculture in
the region is mainly based on irrigation from Nile
waters and many people live alongside the river where
land is often used for cultivation and grazing, thus cre-
ating a potential corridor for dispersal. Climate change
predictions based on outputs from General Circulation
Models (GCMs) and hydrological models suggest that
most of North Africa will experience progressively drier
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conditions in the latter part of this century [27-29].
While the flow of the Nile is influenced primarily by
rainfall and water management upstream, coupled
GCM-hydrological models indicate that stream flow at
Aswan is likely to decline from 2040-2100 and, there-
fore, water capture, diversion and irrigation are likely to
become even more important strategies to ensure ad-
equate food production in Egypt and Sudan [29]. While
the climate literature lacks specificity about future sur-
face wind directions and speed associated with warming
in the 21* century, increased variability and storm
events associated with atmospheric warming [28] may
enhance opportunities for long-distance dispersal of the
vector.

Anopheles arabiensis is particularly adaptive to envir-
onmental change and is known to have a wide range of
feeding and resting patterns and can adapt quickly to
control measures such as indoor residual spraying [30].
Its larval habitats are similar to those of An. gambiae al-
though An. arabiensis is able to use a wide range of
aquatic habitats, including slow flowing, partially shaded
streams and a variety of large and small natural and
man-made habitats [30]. The northern edge of the dis-
tribution of An. arabiensis is downriver beyond Don-
gola, approximately 300 km south of the border with
Egypt, but occasional incursions of the species have
been found as far north as Wadi Halfa [10] (Figure 1).
The main hypothesis of this investigation is that the re-
invasion of An. arabiensis has been limited by wide
expanses of hyperarid desert, low human population
density, and limited human movement between Egypt
and Sudan. In addition, the Ministries of Health in both
Egypt and Sudan conduct annual surveillance in the
border area and intensively spray with residual insecti-
cides potential breeding habitats and dwellings, which
may also limit dispersal from south to north. However,
expansion of densely irrigated cropland from Lake
Nasser, the Toshka Lakes and Kom Ombo northward
may provide foci for establishment and future range
expansion (Figure 1).

Methods

Model descriptions

Two well-known models were selected for analysis: the
Land Change Modeler (LCM), which was used for pro-
jecting future changes in irrigated cropland extent, and
MaxEnt, for projecting future changes in potential An.
arabiensis distribution. The LCM is available either as
an extension to the popular ArcGIS software or as a
module within Idrisi, a widely used raster-based GIS
package. Land cover projections of the LCM were fed
into MaxEnt to project a range of potential distributions.
The LCM employs a set of spatial data layers associated

with land cover changes, such as rivers, roads,
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settlements, which distinguishes it from agent-based
models, which are generally based on behavioural
aspects of agents of change and attempt to model deci-
sions often made at the local level [22,31,32]. Consistent
with other studies that address future environmental
conditions in North Africa [20,28,29], the year 2050
was selected as the endpoint of the simulations using
both a business-as-usual (BAU) and a Green Nile Sce-
nario, which assumes high probability of desert land
changing to irrigated cropland (details below). LCM
establishes the quantity of change by evaluating the
empirical Markov matrix based on comparison between
the initial and second land cover maps in time and
then assumes this same transition probability as it pro-
jects into the future [33]. The BAU scenario simply
assumes that transition probabilities derived from past
changes remain constant through time and are derived
from the changes observed between two land cover
maps. The LCM allows users to vary the transition
probabilities and so the transition probabilities were
modified for a set of LCM runs to examine how in-
creasing the probability of land changing from desert to
irrigated cropland would change spatial allocation (i.e.
the Green Nile scenario) of irrigated cropland, which is
clearly more suitable habitat for this vector species than
barren desert. For the LCM simulations, a neural net-
work approach was selected to develop a transition
probability layer based on prior experience with this
particular algorithm in the context of land change
modeling [34].

Although many SDMs have been developed, MaxEnt
was selected since it is robust, it accepts categorical data,
and it produces accuracies that typically compare with
or exceed other SDMs [35,36]. This SDM uses a
machine-learning approach with a set of user-specified
covariates that include species occurrence points, used
to develop a set of training samples, and spatial layers
representing environmental variables (generally denoted
as z) to produce predicted probability surfaces (denoted
here as p(s)) in raster format. The model employs a
maximum entropy approach that integrates model cov-
ariate selection and controls for overfitting by using
smoothing and identifies how the covariates contribute
to the model. The model minimizes relative entropy, a
measure of dispersion or uncertainty associated with a
random variable, through a Gibbs distribution, which
is an exponential family model:

fi(2) = f(2)e @

where fi(z) is the probability density of covariates
across a landscape at known species locations and
(z)=a+B-h(z). a is a normalizing constant that
ensures fi(z) sums to 1 and P is an estimated
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parameter that weighs the contribution of each covari-
ate using a log likelihood approach [36]. For a
complete explanation of MaxEnt, readers are referred
to Elith et al. [37]. For all MaxEnt runs, the default
settings were utilized as generally followed in other
SDM intercomparison studies that involve this particu-
lar model [35].

Application of the land change models and MaxEnt
models

Two land cover maps from 2001 and 2009 were
obtained, which were derived from classification of Mod-
erate Resolution Imaging Spectroradiometer (MODIS)
imagery produced as the 500 m MCDI12Ql data
obtained from a NASA website [38]. The International
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Geosphere-Biosphere Programme (IGBP) land cover
scheme was selected, which includes 17 classes, includ-
ing two that contain croplands that were combined to
form a single cropland class (Figure 1). All other land
cover types except water were reclassified to form a sin-
gle class referred to as “other lands,” which was domi-
nated by the barren or sparsely vegetated classes in the
IGBP scheme. The study area shown in Figure 1 was
selected to cover the Nile River corridor north of the
200 mm rainfall line as determined from rasterized cli-
mate data (described below). Previous analysis of the
MCD12Q1 product for the study area showed excellent
agreement with Landsat imagery gridded to 30 m spatial
resolution as well as MODIS 250 m imagery of the nor-
malized difference vegetation index (NDVI), thus provid-
ing high confidence in the accuracy of the land cover
maps used in the LCM [26]. Three distance layers from
water bodies, major roads [39] and irrigated cropland
were created as proximate drivers in the LCM.

In addition to land cover data, climate data was also
used, including mean monthly minimum/maximum
temperature and precipitation, obtained from the
WorldClim database gridded to approximately 1 km
resolution [40]. NDVI was also derived from MODIS
imagery gridded to 1 km resolution and were also
obtained for the period 2001-2010 from the same
NASA website that supplied the MCD12Q1 products
and a range of summary statistics was calculated includ-
ing mean annual NDVI, annual range and standard devi-
ation images. As NDVI provides a proxy measure of
surface moisture, these images were also used in MaxEnt
as environmental covariates. Table 1 summarizes the
covariates used in both the LCM and MaxEnt models.

Sixty-four different MaxEnt experiments were con-
ducted using different combinations of land cover,
NDVI, climate layers and an elevation layer derived from
the Shuttle Radar Topography Mission (SRTM) 90 m
data [41]. This number of experiments provided a suffi-
cient sample to evaluate model performance with differ-
ent combinations of covariates. An experiment was
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defined as a unique set of environmental covariates in
which different combinations of covariates were input to
the model. Fifty of these experiments involved 2001 con-
ditions to evaluate how the SDM performed for near-
current conditions and the remaining experiments
involved inclusion of the BAU and Green Nile projec-
tions. Species occurrence points were obtained from the
Malaria Atlas Project (MAP) [42] and the points were
gridded to 1 km resolution to match the resolution of
the climate data. The points include collections of both
immature and adult forms obtained since 1985, have a
spatial precision of 10 degrees and are approximately
concurrent with the NDVI and climate layers used in
the analysis (Sinka, pers comm). Of the total 104 unique
occurrence points that fell within the study area, 25 oc-
currence points were randomly selected to independ-
ently check the results of each model experiment
(Figure 1). According to the MAP database, most collec-
tions consisted of adults resting inside houses. Note that
many of the points fell to the south of the Nile Corridor
in Sudan, which was necessary to obtain a reliable statis-
tical representation of the environmental conditions
associated with presence of An. arabiensis. The inde-
pendent test points were used to calculate statistics such
as the mean p(s) and standard deviation for each model
experiment to evaluate the accuracy of different
experiments.

Several different bias layers were created to de-bias
the data for unrepresentative (i.e. highly clustered) sam-
pling of specimens. After a number of trials with differ-
ent bias layers, a bias layer was selected based on
examination of the point distribution in Figure 1, which
shows a clear tendency for collections near rivers, as
well as informed assumptions based on the authors’
field survey experience; i.e. that the probability of sam-
pling for An. arabiensis declines as a function of dis-
tance from major roads and coasts. To create this
particular bias layer, a procedure developed by Fuller
et al. [25] was applied. Thus, each experiment was eval-
uated both qualitatively by comparing the MaxEnt

Table 1 List of covariates used in the Land Change Modeler and MaxEnt

Derived Layer(s) Used in Model Projections

Spatial Model Covariates/Drivers [Sources]

Land Change Land cover classification 2001 [38]

Modeler (LCM) Land cover classification 2009 [38]
Major roads and rivers [39]

MaxEnt Mean monthly maximum and minimum

temperature [40]

Mean monthly precipitation [40]

Shuttle Radar Topography Mission (SRTM) [41]
An. arabiensis points [42]

16-day composites of the normalized difference
vegetation index (NDVI), 2001-2009 [38]

Distance from water bodies
Distance from irrigated cropland
Distance from roads

Current and future land cover projections from the LCM scenarios

Annual range (maximum-minimum) of NDVI values
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outputs with known distribution and by extracting
probability values using the independent test points
selected randomly from the data set.

The lowest presence threshold (LPT) method was used
for setting thresholds to evaluate presence/absence from
the MaxEnt experiments. This method uses the lowest
predicted value associated with any one of the observed
occurrence points and it can be interpreted ecologically
as pixels predicted as being at least as suitable as those
where a species presence has been recorded [43]. It is
thus considered a highly conservative way to map the
minimum predicted distribution. In addition, the LPT
approach reduces omission error to zero in the training
data set [43]. A 2050 “Green Nile” scenario was created
by manipulating the Markov transition matrix such that
the probability of a pixel classified as “other land” chan-
ging to a pixel classified as “cropland” was increased to
0.200, while no change (other land not changing to any
other land cover category) was assigned a probability of
0.800. The same transition probability in the BAU
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scenario derived from overlay of the 2001 and 2009
MODIS land cover maps was 0.028, thus the Green Nile
scenario assumed nearly an order of magnitude increase
in probability of other land becoming this land cover
type.

Land cover layers for 2001, the BAU and the Green
Nile scenarios were then passed to the MaxEnt SDM to
see how habitat suitability may change by 2050 as a
function of potential changes in irrigated cropland. A
Monte Carlo approach was used to simulate 2050 NDVI
by taking the mean and standard deviation of 2009
NDVI range (maximum-minimum) extracted for irri-
gated lands (mean =0.577, SD =0.098). NDVI range was
used because it provides a convenient summary statistic
that relates to crop phenology. The NDVI distribution
for irrigated cropland was estimated by evaluating the
image histogram of 2009 NDVI values for irrigated land
and by extracting 2,230 randomly sampled points that
fell on irrigated cropland. The probability distribution
was evaluated using the Chi Square statistic, which was

a.
Wadi Halfa
Dongola
Legend 0 85 130 260 390 520
A Sudan towns Major rivers - Background E Other lands W+E Kilometers
/\  Kom Ombo l:l Countries - Croplands - Water
Figure 2 Land cover projections from the LCM: a. BAU scenario and b. Green Nile Scenario.
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significant for a normal distribution (Chi-Square =57.46,
DF =4, p=0.00). The resultant LPT-based maps were
then analysed using a set of GIS operations to quantify
key landscape characteristics including the number of
suitable habitat patches, their area and distances be-
tween patches within a 25-km buffer around water bod-
ies. This analysis served to provide basic information on
the spatial configuration of projected cropland, including
gaps, patch size, corridor length, etc., from which one
may infer re-invasion potential through the Nile Valley
under different scenarios. Such data may also be useful
in guiding parameterization of new metapopulation
models that consider habitat patch dynamics of malaria
vectors in areas of low transmission [44].

Results

For 2001 land cover experiments, mean probability of
species presence, p(s), obtained from the test points,
ranged from 0.27 for one experiment that included
monthly minimum and maximum temperature only to
0.64 and those that included NDVI range, SRTM and
land cover, respectively. The mean p(s) value for all
experiments that included either monthly temperature
or precipitation covariates was 0.51 (SD =0.11), whereas
the mean for experiments that included only land cover,
NDVI or elevation was 0.57 (SD=0.05). It was noted
that experiments that included temperature generally
produced anomalously high p(s) values in desert areas
far from water bodies, which further suggests that cli-
mate data failed to enhance the model outputs. This
may have been due to the uniformly hot, arid condi-
tions that characterize northern Sudan and Upper
Egypt.

Figure 2 shows the 2050 LCM outputs for both the
BAU and Green Nile scenarios and reveals two
extremes with only modest growth of irrigated cropland
along the Nile noticeable relative to 2001 land cover
shown in Figure 1. This is probably a more realistic sce-
nario compared to Figure 2b, which represents an ex-
treme case that would involve high investment in costly
irrigation infrastructure and a high degree of political
stability to realize even by mid-century. The projected
distribution of irrigated cropland in this figure resem-
bles the buffer around water bodies (Figure 3) and
shows how the LCM produced range expansion by ad-
jacency effects along major fronts as opposed to expan-
sion through long-distance dispersal via establishment
at disjunct foci.

Figure 3a reveals potential distribution in 2001 based
on 2001 land cover, SRTM, and NDVI range (mean p
(s)=0.60, SD =0.23, LPT =0.23), whereas Figures 3b and
3c show the 2050 results when Figures 2a and 2b were
input to the SDM. The LPT values were 0.45 and 0.29
for the BAU and Green Nile scenarios, respectively. All
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three projections reveal potentially suitable habitat
around the Toshka Lakes, which have experienced mod-
est expansion of irrigation and have been targeted by the
Egyptian Government as an area for major agricultural
development [26]. In addition, Figure 3 reveals an area
of potentially suitable habitat associated with Lake Nas-
ser in Upper Egypt, which is consistent with understand-
ing of the vector’s larval habitat characteristics [30]. The
maps depicting future scenarios (Figures 3b and 3c) cor-
respond closely to the distribution of irrigated cropland
in the BAU and Green Nile scenarios. Figures 3b and 3c
also show the strong influence that land cover may have
on SDM projections. It is important to note that the
LPT approach used to threshold these future projections
implies that test points representing An. arabiensis habi-
tat locations are static and that the species will remain
present in these spots by 2050.

The results in Table 2 reveal a range of possible out-
comes by 2050 with an increase of nearly 82,000 sq km
in potential An. arabiensis range expansion between the
BAU and Green Nile scenarios, which equates to ap-
proximately 49% of the area within the 25 km buffer
around water bodies (Figure 3), which coincides approxi-
mately with the widest area of irrigated cultivation found
around Kom Ombo [26]. Table 2 also provides the patch
characteristics of the three maps shown in Figure 3.
Interestingly, the BAU scenario (Figure 3b) produced a
more fragmented arrangement of potential habitat
patches than the 2001 projection (Figure 3a) with fewer
smaller patches relative to 2001. This result may be an
artefact of the decrease in potentially suitable habitat at
the southern end of the study area. Specifically, the
MODIS-based land cover maps show that in 2001 crop-
land covered 405,758 ha, whereas in 2009 the cropland
area decreased to 382,341 ha. Thus, in the BAU scenario
this would lead the Land Change Modeler to project a
decrease in irrigated cropland area by 2050, which is
consistent with the decrease shown in Table 2. Figure 3a
also contains an apparent anomaly in that the area from
Kom Ombo northward is excluded as potential habitat
while the BAU and the Green Nile Scenarios identified
these areas as potentially suitable, which appears reason-
able given the density of irrigation present in this part of
Upper Egypt [26]. The maximum distance between
patches reported in Table 2 is considered biologically
significant as it indicates the largest desert gap that an
adult An. arabiensis would have to cross to reach suit-
able habitat along the Nile corridor. These distances
were 228.37, 64.02 and 49.38 km for Figures 3a-3c, re-
spectively. Thus, despite the large increase in mean patch
area and decrease in mean patch distance between the
BAU and Green Nile scenarios, these model results sug-
gest that significant gaps would still exist that may prove
inimical to dispersing adult individuals of An. arabiensis,
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which typically move 350-650 mday™ within suitable
habitats [45]. Of course, the dispersal capacity for this
species may be greatly facilitated through chance events
related to downwind dispersal, human action, particu-
larly transportation of eggs and immature forms through
future transportation and trade linkages, which are
planned for development [10,46]. It should be noted that
the models used in this demonstration were not parame-
terized to account for growth of linear connections

between patches although this may be possible in future
scenario development.

Conclusions

This study provides a first demonstration of how land
change and species distribution models may be linked to
advance understanding of potential distributions of mal-
aria vectors as a result of anthropogenically driven
changes in land cover and use, in this case related to

Table 2 Summary landscape statistics for the three projections of potential range

Metric 2001 2050 BAU 2050 Green Nile
Total area of suitable habitat in km? 15,484 11,633 93,646
Number of patches 315 324 35

Mean patch area in sq km (SD)
Mean inter-patch distance in km within 25 km buffer of water bodies (SD)

Maximum inter-patch distance (km) within 25 km buffer of water bodies

5,103.34 (3,993.26)
19.38 (27.65)
22837

896.26 (653.14)
12.72 (9.92)
64.02

14,331.17 (7,886.03)
4.51 (7.89)
49.38
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irrigation and agricultural expansion. With a few excep-
tions, the spatial projections of potentially suitable
range (Figure 3) generally produced results consistent
with understanding of the bionomics of An. arabiensis.
Figure 3 also reveals three large gaps along the Nile
corridor in Sudan where quarantine efforts may be tar-
geted in the future. Further, the projected ranges for
the three maps show potential habitat patches associated
with flowing and man-made water bodies and sparsely
vegetated areas within the Nile Valley, indicating the
broad range of environments associated with the species
[30]. Generally, such maps produced by linked LCM-
SDMs are suitable for inferring potential re-invasion in
so far as they allow quantification of distances from
current or future occurrence sites, connectivity corridors
and potentially suitable habitats of particular sizes that
may be related to the flight range of this species as well
as other vectors. Future validation of land cover change
projections may be supported by use of moderate reso-
lution satellite imagery such as MODIS 250 m images
that clearly reveal irrigated patches of cropland. In
addition, mosquito collection data from on-going and fu-
ture surveillance efforts may also be employed to check
the accuracy of potential range projections using a stand-
ard error matrix approach.

Although little is known about long-distance dispersal
in An. arabiensis, many studies have demonstrated long-
distance, wind-aided dispersal of adult female mosqui-
toes over distances ranging from tens to hundreds of km
[46]. Thus, the distances between potential habitat
patches shown in Table 2 appear to be surmountable if
chance establishment were to occur through the action
of wind or human agents. Consistent with this conclu-
sion, several reports indicate that anopheline vectors, in-
cluding Anopheles multicolor, Anopheles sergentii and
Anopheles algeriensis, have already been found in the
area around the Toshka Lakes and other areas experien-
cing land use and cover changes, such as along the Gulf
of Suez,where the presence of Anopheles pharoensis has
been recorded recently [47-49].

The results in this study should be considered as
heuristic in that they serve to illustrate the potential of
using LCM outputs to drive SDMs as a way to explore
different potential distribution scenarios related to irri-
gation in arid environments. The outputs of SDMs
driven by LCM projections may be connected further to
mathematical models such as metapopulation models
that consider patch size and connectivity to simulate
colonization, extinction, as well as pathogen transmis-
sion and epidemic processes [44]. In addition, future
applications of LCMs may include growth of linear con-
nections, particularly establishment of new roads and irri-
gation canals that are likely to occur in the near future.
The LCM used in this demonstration is capable of
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projecting such changes, although limited GIS data on
minor road and canal networks precluded this sort of ana-
lysis in this study. However, experimentation with the
LCM used here in other contexts [34] suggests that par-
ameterizing the growth of linear networks can prove very
challenging.

Although it was originally hypothesized that climate
layers would enhance the SDM results, low average p(s)
values for test points and anomalously high p(s) values
in hyperarid areas far from major rivers indicated that
inclusion of climate data produced unrealistic SDM out-
puts. In light of the important invasion event in the
1940s when the species must have been widespread in
the Nile Valley of Egypt, it is concluded that temperature
seasonality and isothermality are not limiting factors
anywhere in the Nile Valley and that rainfall is generally
too low to support establishment in Upper Egypt. There-
fore, irrigation as evidenced by cropland and NDVI was
used as the main variable that would affect future distri-
bution of the vector. This result also suggests that at this
scale of investigation (as shown in Figure 1), 1 km cli-
mate data are unlikely to improve SDM projections and
may even worsen them if applied to regions that do not
possess major climate gradients.

Irrigation from surface and ground water is likely to
continue to be a major driver of environmental change
in North Africa and the Middle East in order to meet
growing regional and global demand for food and realize
export potential. Moreover, other tropical regions within
South Asia, Sub-Saharan Africa and Latin America are
likely to experience expansion of irrigation infrastructure
as well in the coming decades [20]. Beyond irrigation,
deforestation for agricultural expansion is another major
concern wherein LCMs and SDMs may be linked, par-
ticularly where forest is being transformed into pastures
and farmland in the Amazon Basin. Additional applica-
tions involving LCMs and SDMs include habitat frag-
mentation, urbanization, road building, and wetland
modification, to name but a few [13]. However, while
LCMs have potential to project land cover changes asso-
ciated with these processes, these applications within the
context of vector-borne disease studies remain largely
underexploited.

While this study provides a new methodological dem-
onstration, several limitations are worth noting, includ-
ing the assumption of constant transition probability
inherent in the Markov Chain approach, which is com-
mon to many LCMs [34], the assumption that the occur-
rence data used here can be used to represent future
distribution (i.e. that presence records are static) and
therefore may be used to evaluate the results of distribu-
tion projections decades into the future, and the limited
availability of vector point data to parameterize SDMs in
areas such as North Africa. Areas of future research may
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include a range of different land change and species dis-
tribution models to explore further the variability of
LCM and SDM outputs in different contexts. The results
of such investigations may be useful for deterministic
models that evaluate pathogen transmission and epi-
demic potential within and between homogeneous and
non-homogeneous habitat patches and help to guide
more realistic model formulation by accounting for mul-
tiple patches of variable size and inter-patch distances.
Further, the approach used here may be routinely ap-
plied to assess potential impacts of future irrigation/agri-
cultural development projects in arid areas. Most
countries currently have legislation ensuring that future
irrigation development projects are subject to environ-
mental assessments and, therefore, linking LCMs and
SDMs can assist countries in managing negative impacts
related to vectors and vector-borne diseases in conjunc-
tion with other data and tools employed in environmen-
tal and disease impact assessments.
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