27 research outputs found

    Environmental Variables Affecting the Performance of Large-Scale Solar Photovoltaic Power Plants

    Get PDF
    The environmental sciences have been critical to identifying global environmental challenges such as climate change, but they have been less extensively utilized in deploying solutions to those challenges, such as solar energy. Environmental variables such as temperature, humidity, aerosols, clouds, soiling, and snowfall have important effects on solar PV performance, and these effects can vary regionally. The current status of large-scale solar PV deployment will be discussed along with the role of environmental variables on PV performance

    A Prospective Mapping of Environmental Impacts of Large Scale Photovoltaic Ground Mounted Systems Based on the CdTe Technology at 2050 Time Horizon

    No full text
    International audienceEnvironmental performances of PV systems are likely to evolve in the future due to significant technological improvements of the systems, to less energy intensive manufacturing processes as well as a shift towards less carbon-intensive energies for electricity mix. In spite of the complexity to estimate these changes with accuracy, projections are available based on scenarios representing different levels of improvements. Based on these scenarios, prospective environmental impacts and electricity production of large scale PV systems are assessed. This paper focuses on GHG performance of large scale photovoltaic ground mounted systems based on the Cadmium Telluride (CdTe) technology. We compare the current (2011-2013) and prospective (at 2050 time horizon) GHG performance of such PV systems under different scenarios accounting for technological improvements, future electricity mixes, and module manufacturing origin. A significant decrease in GHG performance is to be found for the prospective scenarios compared to the current situation ranging from 50 up to 80% depending on the scenarios. Prospective technological improvement seems to induce more uncertainties than prospective electricity mixes involved in manufacturing the modules

    Distributions of Trace Gases and Aerosols During the Dry Biomass Burning Season in Southern Africa

    Get PDF
    [1] Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m−3, and 13.2 and 14.3 μg m−3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m−3, and 6400 cm−3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m−3), organic particulate carbon (6.2 ± 5.2 μg m−3), total particle mass (26.0 ± 4.7 μg m−3), and potassium particles (0.4 ± 0.1 μg m−3) were comparable to those in polluted, urban air. Since the majority of the measurements in this study were obtained in locations well removed from industrial sources of pollution, the high average concentrations of pollutants reflect the effects of widespread biomass burning. On occasions, relatively thin (∼0.5 km) layers of remarkably clean air were located at ∼3 km above mean sea level, sandwiched between heavily polluted air. The data presented here can be used for inputs to and validation of regional and global atmospheric chemical models

    Distributions of Trace Gases and Aerosols During the Dry Biomass Burning Season in Southern Africa

    Get PDF
    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m−3, and 13.2 and 14.3 μg m−3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m−3, and 6400 cm−3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m−3), organic particulate carbon (6.2 ± 5.2 μg m−3), total particle mass (26.0 ± 4.7 μg m−3), and potassium particles (0.4 ± 0.1 μg m−3) were comparable to those in polluted, urban air. Since the majority of the measurements in this study were obtained in locations well removed from industrial sources of pollution, the high average concentrations of pollutants reflect the effects of widespread biomass burning. On occasions, relatively thin (∼0.5 km) layers of remarkably clean air were located at ∼3 km above mean sea level, sandwiched between heavily polluted air. The data presented here can be used for inputs to and validation of regional and global atmospheric chemical models

    Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    Get PDF
    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May–October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia

    Evolution of Gases and Particles from a Savanna Fire in South Africa

    Get PDF
    Airborne measurements of particles and gases from a 1000-ha savanna fire in South Africa are presented. These measurements represent the most extensive data set reported on the aging of biomass smoke. The measurements include total concentrations of particles (CN), particle sizes, particulate organic carbon and black carbon, light-scattering coefficients, downwelling UV fluxes, and mixing ratios for 42 trace gases and 7 particulate species. The ratios of excess nitrate, ozone, and gaseous acetic acid to excess CO increased significantly as the smoke aged over ∼40–45 min, indicating that these species were formed by photochemistry in the plume. For 17 other species, the excess mixing ratio normalized by the excess mixing ratio of CO decreased significantly with smoke age. The relative rates of decrease for a number of chemical species imply that the average OH concentration in the plume was ∼1.7 × 107 molecules cm−3. Excess CN, normalized by excess CO, decreased rapidly during the first ∼5 min of aging, probably due to coagulation, and then increased, probably due to gas-to-particle conversion. The CO-normalized concentrations of particles \u3c1.5 μm in diameter decreased, and particles \u3e1.5 μm diameter increased, with smoke age. The spectral depletion of solar radiation by the smoke is depicted. The downwelling UV flux near the vertical center of the plume was about two-thirds of that near the top of the plume

    Emissions of Trace Gases and Particles From Savanna Fires in Southern Africa

    Get PDF
    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 μm). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3–15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide

    Emissions from savanna fires in southern Africa

    No full text
    Thesis (Ph. D.)--University of Washington, 2004Airborne measurements are presented of emissions from savanna fires in southern Africa during the dry season. Measurements were obtained aboard the University of Washington Convair-580 research aircraft during the SAFARI 2000 field project in August and September 2000. Savanna fires in southern Africa emit a wide range of gaseous and particulate species including carbon, sulfur, nitrogen, halogen, and oxygenated compounds. Emission factors, emission ratios, and regional emissions of fifty trace gas and particulate species were derived, including eight species not previously reported in the literature (dimethyl sulfide, methyl nitrate, five species of hydrocarbons, and particles with diameters from 0.1--3 mum diameter). The physical, chemical, and radiative properties of the plume from a large savanna fire in South Africa are characterized, including plume dimensions, secondary formation of ozone and organic acids, oxidation of hydrocarbons, coagulation of particles, and gas-to-particle conversion in aged smoke. Numerous fires, thermodynamically stable layers aloft, and large-scale anticylonic flow result in high concentrations of air pollution distributed throughout the lower troposphere over southern Africa during the dry season. Average regional concentrations of CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 mug m-3), organic particulate carbon (6.2 +/- 5.2 mug m-3), total particle mass (26.0 +/- 4.7 mug m-3) are comparable to those found in polluted urban environments. The GEOS-CHEM model of tropospheric chemistry is used to characterize the transport of biomass burning emissions from southern Africa to the neighboring Atlantic and Indian Oceans during the dry season (May--October) of 2000. A large quantity of biomass burning emissions from southern Africa is transported westward over the latitudes 0--20°S to the southern Atlantic Ocean (∼40 Tg CO from May--October), contributing to a pollution anomaly in the south Atlantic Ocean. However, most of this material is transported back eastward over higher latitudes to the south (21--60°S) eventually reaching the southern Indian Ocean. As a result, ∼60 Tg of CO from biomass burning in southern Africa is transported eastward to the Indian Ocean across the latitude band 0--60°S from May--October, enhancing background CO concentrations by ∼4--13 ppbv per month over the southern subtropical Indian Ocean during the dry season

    The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: Results from field observations at a 550-MW<sub>AC</sub> utility-scale PV plant

    No full text
    <p>With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM<sub>2.5</sub> and PM<sub>10</sub> (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM<sub>2.5</sub> and PM<sub>10</sub> concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM<sub>2.5</sub> and PM<sub>10</sub> concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM<sub>2.5</sub> increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions.</p> <p><i>Implications</i>: This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.</p

    Value of stability in photovoltaic life cycles

    No full text
    PV module stability, in terms of reduced degradation rate and increased lifetime, provides an important lever for reducing the levelized cost of energy and life cycle environmental impacts of PV systems. Adapting an earlier value of efficiency methodology, the PV module cost per watt entitlement for a 30-year system lifetime is estimated to be $0.0125/W per 0.1% reduction in annual degradation rate, based on LCOE calculations. From an environmental perspective, the life cycle carbon footprint of a ground-mount PV system in a high solar resource location can be reduced by 0.3-1.0 g CO 2 -eq/kWh per 0.1% reduction in annual degradation rate. Increasing average PV module lifetime from 30 to 50 years will further increase these benefits, would reduce annual replacements by 40% and would result in net deferment of 62% of the projected module decommissioning through 2050 for PV modules installed in 2020. Increasing lifetime of state-of-the-art PV modules by 20 years to harvest the value of stability fully will require reducing PV module degradation rates to 0.2%/yr
    corecore