122 research outputs found

    Non-perturbative contributions to the plane-wave string mass matrix

    Full text link
    D-instanton contributions to the mass matrix of arbitrary excited string states of type IIB string theory in the maximally supersymmetric plane-wave background are calculated to leading order in the string coupling using a supersymmetric light-cone boundary state formalism. The explicit non-perturbative dependence of the mass matrix on the complex string coupling, the plane-wave mass parameter and the mode numbers of the excited states is determined.Comment: 25 pages, 1 figure. v3: corrected minor typos, added referenc

    Non-perturbative effects in the BMN limit of N=4 supersymmetric Yang-Mills

    Get PDF
    One-instanton contributions to the correlation functions of two gauge-invariant single-trace operators in N=4 SU(N) Yang-Mills theory are studied in semi-classical approximation in the BMN limit. The most straightforward examples involve operators with four bosonic impurities. The explicit form for the correlation functions, which determine the anomalous dimensions, follows after integration over the large number of bosonic and fermionic moduli. Our results demonstrate that the instanton contributions scale appropriately in the BMN limit. We find impressive agreement with the D-instanton contributions to mass matrix elements of the dual plane-wave IIB superstring theory, obtained in a previous paper. Not only does the dependence on the scaled coupling constants match, but the dependence on the mode numbers of the states is also in striking agreement.Comment: 52 pages, no figures, latex; V2: minor change

    Rapidly Rotating Fermions in an Anisotropic Trap

    Get PDF
    We consider a cold gas of non-interacting fermions in a two dimensional harmonic trap with two different trapping frequencies ωxωy\omega_x \leq \omega_y, and discuss the effect of rotation on the density profile. Depending on the rotation frequency Ω\Omega and the trap anisotropy ωy/ωx\omega_y/\omega_x, the density profile assumes two qualitatively different shapes. For small anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \ll \sqrt{1+4 \Omega^2/\omega_x^2}), the density consists of elliptical plateaus of constant density, corresponding to Landau levels and is well described by a two dimensional local density approximation. For large anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \gg \sqrt{1+4 \Omega^2/\omega_x^2}), the density profile is Gaussian in the strong confining direction and semicircular with prominent Friedel oscillations in the weak direction. In this regime, a one dimensional local density approximation is well suited to describe the system. The crossover between the two regimes is smooth where the step structure between the Landau level edges turn into Friedel oscillations. Increasing the temperature causes the step structure or the Friedel oscillations to wash out leaving a Boltzmann gas density profile.Comment: 14 pages, 7 figure

    Entropy of near-extremal black holes in AdS_5

    Get PDF
    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.Comment: LaTeX; v2: references and a few additional comments adde

    Comments on D-brane Interactions in PP-wave Backgrounds

    Get PDF
    We calculate the interaction potential between widely separated D-branes in PP-wave backgrounds in string theory as well as in low-energy supergravity. Timelike and spacelike orientations are qualitatively different but in both cases the effective brane tensions and RR charges take the same values as in Minkowski space in accordance with the expectations from the sigma model perturbation theory.Comment: Latex, 22 pages. Typos corrected and a reference added, final versio

    Mass Splitting and Production of Σc0\Sigma_c^0 and Σc++\Sigma_c^{++} Measured in 500GeV500 {GeV} π\pi^- -N Interactions

    Full text link
    From a sample of 2722±782722 \pm 78 Λc+\Lambda_c^+ decaying to the pKπ+pK^-\pi^+ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, 143±20143 \pm 20 Σc0\Sigma_c^0 and 122±18122 \pm 18 Σc++\Sigma_c^{++} through their decays to Λc+π±\Lambda_c^+ \pi^{\pm}. The mass difference M(Σc0)M(Λc+M(\Sigma_c^0) - M(\Lambda_c^+) is measured to be (167.38±0.29±0.15)MeV(167.38\pm 0.29\pm 0.15) {MeV}; for M(Σc++)M(Λc+)M(\Sigma_c^{++}) - M(\Lambda_c^+), we find (167.76±0.29±0.15)MeV(167.76\pm 0.29\pm0.15) {MeV}. The rate of Λc+\Lambda_c^+ production from decays of the Σc\Sigma_c triplet is (22\pm 2\pm 3) {%} of the total Λc+\Lambda_c^+ production assuming equal rate of production from all three, as measured for Σc0\Sigma_c^0 and Σc++\Sigma_c^{++}. We do not observe a statistically significant Σc\Sigma_c baryon-antibaryon production asymmetry. The xFx_F and pt2p_t^2 spectra of Λc+\Lambda_c^+ from Σc\Sigma_c decays are observed to be similar to those for all Λc+\Lambda_c^+'s produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed fil

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Get PDF
    The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies

    Measurement of B(D_s+ -> mu+ nu_mu)/B(D_s+ -> phi mu+ nu_mu) and Determination of the Decay Constant f_{D_s}

    Full text link
    We have observed 23.2±6.00.9+1.023.2 \pm 6.0_{-0.9}^{+1.0} purely-leptonic decays of Ds+>μ+νμD_s^+ -> \mu^+ \nu_\mu from a sample of muonic one prong decay events detected in the emulsion target of Fermilab experiment E653. Using the Ds+>ϕμ+νμD_s^+ -> \phi \mu^+ \nu_\mu yield measured previously in this experiment, we obtain B(Ds+>μ+νμ)/B(Ds+>ϕμ+νμ)=0.16±0.06±0.03B(D_s^+ --> \mu^+ \nu_\mu) / B(D_s^+ --> \phi \mu^+ \nu_\mu) =0.16 \pm 0.06 \pm 0.03. In addition, we extract the decay constant fDs=194±35±20±14MeVf_{D_s}=194 \pm 35 \pm 20 \pm 14 MeV.Comment: 15 pages including one figur

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed
    corecore