3,108 research outputs found
Rewiring of the TCR signalosome in natural intestinal Intraepithelial T lymphocytes drives non-deletional tolerance
Intraepithelial T lymphocytes (T-IEL) are a large population of cytotoxic T cells that protect the small intestinal epithelium against pathogens. Based on ontogeny, T-IEL can be categorized into two major subsets: induced and natural. Natural T-IEL are agonistically selected in the thymus on self-antigens before migrating directly to the small intestine. Despite having self-reactive T cell antigen receptors (TCR), natural T-IEL are maintained in a tolerized state in the gut by unknown mechanisms. We therefore investigated TCR signaling in T-IEL using multiplexed fluorescent cell barcoding, phosphoproteomics and TCR signaling reporter mouse models, which revealed that TCR signaling is intrinsically suppressed in natural, but not induced, T-IEL. Unexpectedly, we discover that this cell intrinsic suppression was mediated through altered TCR signalosome components. Specifically, downregulation of the key signaling adaptor, Linker for activation of T cells (LAT) during thymic selection is a vital checkpoint for the development and tolerization of natural IELs. Thus, TCR signaling is rewired in self-reactive natural T-IEL to promote tolerance and prevent inappropriate inflammation in the gut.One sentence summary Self-reactive natural intestinal intraepithelial T lymphocytes are developmentally tolerized by rewiring the T cell antigen receptor signaling pathway through the downregulation of the adaptor protein, LAT
Rewiring of the TCR signalosome in natural intestinal Intraepithelial T lymphocytes drives non-deletional tolerance
Intraepithelial T lymphocytes (T-IEL) are a large population of cytotoxic T cells that protect the small intestinal epithelium against pathogens. Based on ontogeny, T-IEL can be categorized into two major subsets: induced and natural. Natural T-IEL are agonistically selected in the thymus on self-antigens before migrating directly to the small intestine. Despite having self-reactive T cell antigen receptors (TCR), natural T-IEL are maintained in a tolerized state in the gut by unknown mechanisms. We therefore investigated TCR signaling in T-IEL using multiplexed fluorescent cell barcoding, phosphoproteomics and TCR signaling reporter mouse models, which revealed that TCR signaling is intrinsically suppressed in natural, but not induced, T-IEL. Unexpectedly, we discover that this cell intrinsic suppression was mediated through altered TCR signalosome components. Specifically, downregulation of the key signaling adaptor, Linker for activation of T cells (LAT) during thymic selection is a vital checkpoint for the development and tolerization of natural IELs. Thus, TCR signaling is rewired in self-reactive natural T-IEL to promote tolerance and prevent inappropriate inflammation in the gut.One sentence summary Self-reactive natural intestinal intraepithelial T lymphocytes are developmentally tolerized by rewiring the T cell antigen receptor signaling pathway through the downregulation of the adaptor protein, LAT
Lower pneumonia risk in COPD patients initiating fixed dose combination (FDC) inhaler comprising extrafine beclometasone dipropionate versus fluticasone
Grant support: This study was funded by Chiesi Farmaceutici S.p.A. David Price has grants and unrestricted funding for investigator-initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Theravance and UK National Health Service; is a peer reviewer for grant committees of the UK Efficacy and Mechanism Evaluation programme, and Health Technology Assessment; and was an expert witness for GlaxoSmithKline.Peer reviewe
Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth
Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm V s consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings
The serotonin transporter linked polymorphic region and brain-derived neurotrophic factor valine to methionine at position 66 polymorphisms and maternal history of depression: Associations with cognitive vulnerability to depression in childhood
Preliminary work indicates that cognitive vulnerability to depression may be associated with variants of the serotonin transporter promoter polymorphism (5-HTTLPR) and the valine to methionine at position 66 (val66met) polymorphism of the brain-derived neurotrophic factor (BDNF) gene; however, existing reports come from small samples. The present study sought to replicate and extend this research in a sample of 375 community-dwelling children and their parents. Following a negative mood induction, children completed a self-referent encoding task tapping memory for positive and negative self-descriptive traits. Consistent with previous work, we found that children with at least one short variant of the 5-HTTLPR had enhanced memory for negative self-descriptive traits. The BDNF val66met polymorphism had no main effect but was moderated by maternal depression, such that children with a BDNF methionine allele had a heightened memory for negative self-descriptive traits when mothers had experienced depression during children\u27s lifetimes; in contrast, children with a methionine allele had low recall of negative traits when mothers had no depression history. The findings provide further support for the notion that the 5-HTTLPR is associated with cognitive markers of depression vulnerability and that the BDNF methionine allele moderates children\u27s sensitivity to contextual factors. Copyright © Cambridge University Press 2013
Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application
Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application
Sustainability of donor programs: evaluating and informing the transition of a large HIV prevention program in India to local ownership
Sustainability is the holy grail of many development projects, yet there is limited evidence about strategies that effectively support transition of programs from donor funding to national governments. The first phase of Avahan, the India AIDS Initiative supported by the Bill and Melinda Gates Foundation (2003–2009), aimed to demonstrate an HIV/AIDS prevention program at scale, primarily targeted at high-risk groups. During the second phase (2009–2013), this large-scale program will be transitioned to its natural owners: the Government of India and local communities. This paper describes the evaluation design for the Avahan transition strategy.A detailed logic model for the transition was developed. The Avahan transition strategy focuses on three activities: 1 enhancing capacities among communities, non-governmental organizations (NGOs), and government entities, in line with India's national AIDS control strategy; 2 aligning technical and managerial aspects of Avahan programs with government norms and standards; and 3 promoting and sustaining commitment to services for most-at-risk populations. It is anticipated that programs will then transfer smoothly to government and community ownership, become institutionalized within the government system, and support a sustained HIV/AIDS response.The research design evaluates the implementation and effectiveness of 1 activities undertaken by the program; 2 intermediate effects including the process of institutionalization and the extent to which key Avahan organizational procedures and behaviors are integrated into government systems; and 3 overarching effects namely the impact of the transition process on the sustained delivery of HIV/AIDS prevention services to high-risk groups. Both qualitative and quantitative research approaches are employed so that the evaluation will both assess outcomes and explain why they have occurred.It is unusual for donor-supported projects in low- and middle-income countries to carefully plan transition processes, and prospectively evaluate these. This evaluation is designed so as to both inform decision making throughout the transition process and answer larger questions about the transition and sustainability of donor programs
Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis.
Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions
Circadian Disruption, \u3cem\u3ePer3\u3c/em\u3e, and Human Cytokine Secretion
Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n=70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-I ra, IL-I-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role
- …