1,184 research outputs found

    Relative effectiveness of mindfulness and cognitive behavioral interventions for anxiety disorders: Meta-analytic review

    Get PDF
    Increasingly popular mindfulness intervention innovations seem demonstrably effective in alleviating anxiety among people with anxiety disorders. However, the basis of such primary and synthetic evidence has, for the most part, been comparisons with non-active comparison conditions such as waiting lists. The longest-standing and strongest evidence-informed practices in this field have been cognitive behavioral interventions (CBI). This meta-analysis synthesized evidence from nine randomized trials of the relative effectiveness of mindfulness interventions compared to CBIs (i.e., active control groups) in treating anxiety disorders. The sample-weighted synthesis found no statistically or practically significant differences between the two groups on anxiety alleviation: Cohen’s d = - 0.02 (95% confidence interval = - 0.16, 0.12). Both groups enjoyed large clinical benefits. However, because mindfulness methods may require less professional training and take less time for both workers and clients to master, they are probably less expensive to provide. As they are probably less expensive, but equally effective, it seems that, in a cost-beneficial sense, mindfulness interventions may be more practically effective. These review-generated meta-analytic findings and inferences may be best thought of as developed hypotheses for future research testing. These and other future research needs are discussed

    Semi-classical States, Effective Dynamics and Classical Emergence in Loop Quantum Cosmology

    Get PDF
    We construct physical semi-classical states annihilated by the Hamiltonian constraint operator in the framework of loop quantum cosmology as a method of systematically determining the regime and validity of the semi-classical limit of the quantum theory. Our results indicate that the evolution can be effectively described using continuous classical equations of motion with non-perturbative corrections down to near the Planck scale below which the universe can only be described by the discrete quantum constraint. These results, for the first time, provide concrete evidence of the emergence of classicality in loop quantum cosmology and also clearly demarcate the domain of validity of different effective theories. We prove the validity of modified Friedmann dynamics incorporating discrete quanum geometry effects which can lead to various new phenomenological applications. Furthermore the understanding of semi-classical states allows for a framework for interpreting the quantum wavefunctions and understanding questions of a semi-classical nature within the quantum theory of loop quantum cosmology.Comment: Accepted for publication in Phys Rev D. Updated version to matc

    Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime

    Full text link
    Theoretical and experimental studies are presented to understand the initial stages of growth of InGaAs on GaAs. Thermodynamic considerations show that, as strain increases, the free‐energy minimum surface of the epilayer is not atomically flat, but three‐dimensional in form. Since by altering growth conditions the strained epilayer can be grown near equilibrium or far from equilibrium, the effect of strain on growth modes can be studied. In situ reflection high‐energy electron diffraction studies are carried out to study the growth modes and surface lattice spacing before the onset of dislocations. The surface lattice constant does not change abruptly from that of the substrate to that of the epilayer at the critical thickness, but changes monotonically. These observations are consistent with the simple thermodynamic considerations presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70448/2/APPLAB-53-8-684-1.pd

    Molecular beam epitaxial growth and luminescence of InxGa1−xAs/InxAl1−xAs multiquantum wells on GaAs

    Full text link
    This letter reports the successful molecular beam epitaxial growth of high‐quality InxGa1−xAs/InxAl1−xAs directly on GaAs. In situ observation of dynamic high‐energy electron diffraction oscillations during growth of InxGa1−xAs on GaAs indicates that the average cation migration rates are reduced due to the surface strain. By raising the growth temperature to enhance the migration rate and by using misoriented epitaxy to limit the propagation of threading and screw dislocations, we have grown device‐quality In0.15Ga0.85As/In0.15Al0.85As multiquantum wells on GaAs with a 0.5–1.0 ÎŒm In0.15Ga0.85As buffer layer. The luminescence efficiency of the bound exciton peak increases with misorientation and its linewidth varies from 11 to 15 meV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69823/2/APPLAB-51-4-261-1.pd

    A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.</p> <p>Results</p> <p>Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.</p> <p>Conclusion</p> <p>The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.</p

    Application of 3D printing to prototype and develop novel plant tissue culture systems

    Get PDF
    Additional file 6. STL (StereoLithography) file was designed for an accessory lid without fan slot using SketchUp or Fusion 360 (Autodesk) software and the STL file was processed using MatterControl 3D printing software and exported as gcode files

    Identification of H3K4me1-associated proteins at mammalian enhancers.

    Get PDF
    Enhancers act to regulate cell-type-specific gene expression by facilitating the transcription of target genes. In mammalian cells, active or primed enhancers are commonly marked by monomethylation of histone H3 at lysine 4 (H3K4me1) in a cell-type-specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC mass spectrometry experiments with mononucleosomes and identified multiple H3K4me1-associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments association of the chromatin-remodeling complex BAF to enhancers in vivo and that, in vitro, H3K4me1-marked nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of the BAF component BAF45C indicate that monomethylation, but not trimethylation, is accommodated by BAF45C's H3K4-binding site. Our results suggest that H3K4me1 has an active role at enhancers by facilitating binding of the BAF complex and possibly other chromatin regulators

    Magneto-structural studies of an unusual [MnIIIMnIIGdIII(OR)4]4− partial cubane from 2,2â€Č-bis-p-tBu-calix[4]arene

    Get PDF
    Reaction of 2,2'-bis-p-tBu-calix[4]arene (H8L) with MnCl2·4H2O, GdCl3·6H2O and 2,6-pyridinedimethanol (H2pdm) affords [MnIIIMnIIGdIII(H3L)(pdmH)(pdm)(MeOH)2(dmf)]·3MeCN·dmf (3·3MeCN·dmf) upon vapour diffusion of MeCN into the basic dmf/MeOH mother liquor. 3 crystallises in the tetragonal space group P41212 with the asymmetric unit comprising the entire cluster. The highly unusual core contains a triangular arrangement of MnIIIMnIIGdIII ions housed within a [MnIIIMnIIGdIII(OR)4]4- partial cubane. Magnetic susceptibility and magnetisation data reveal best fit parameters JMn(II)-Mn(III) = +0.415 cm-1, JMn(III)-Gd(III) = +0.221 cm-1, JMn(II)-Gd(III) = -0.258 cm-1 and DMn(III) = -4.139 cm-1. Theoretically derived magnetic exchange interactions, anisotropy parameters, and magneto-structural correlations for 3 are in excellent agreement with the experimental data

    Comparison of the finite volume and discontinuous Galerkin schemes for the double vortex pairing problem using the SU2 software suite

    Get PDF
    A numerical investigation of finite volume (FV) and discontinuous Galerkin (DG) finite element methods in the framework of the SU2 software is presented. The accuracy of different numerical variants is assessed with reference to the low Mach double vortex pairing flow problem, which has recently been proposed as a benchmark for studying the properties of structured and unstructured grid based methods with respect to turbulent-like vortices. The present study reveals that low-Mach corrections significantly improve the accuracy of second- and third-order, unstructured grid based schemes, at flow speeds in the incompressible limit. Furthermore, the 3rd-order DG method produces results similar to 11th-order accurate FV volume schemes
    • 

    corecore