2,107 research outputs found

    Adaptive and maladaptive consequences of “matching habitat choice:” lessons from a rapidly-evolving butterfly metapopulation

    Get PDF
    Relationships between biased dispersal and local adaptation are currently debated. Here, I show how prior work on wild butterflies casts a novel light on this topic. “Preference” is defined as the set of likelihoods of accepting particular resources after encountering them. So defined, butterfly oviposition preferences are heritable habitat adaptations distinct from both habitat preference and biased dispersal, but influencing both processes. When a butterfly emigrates after its oviposition preference begins to reduce realized fecundity, the resulting biased dispersal is analogous to that occurring when a fish emigrates after its morphological habitat adaptations reduce its feeding rate. I illustrate preference-biased dispersal with examples from metapopulations of Melitaea cinxia and Euphydryas editha. E. editha were feeding on a well-defended host, Pedicularis, when humans created patches in which Pedicularis was killed and a less-defended host, Collinsia, was rendered phenologically available. Patch-specific natural selection favoured oviposition on Collinsia in logged (“clearing”) patches and on Pedicularis in undisturbed open forest. Quantitative variation in post-alighting oviposition preference was heritable, and evolved to be consistently different between patch types. This difference was driven more by biased dispersal than by spatial variation of natural selection. Insects developing on Collinsia in clearings retained adaptations to Pedicularis in clutch size, geotaxis and oviposition preference, forcing them to choose between emigrating in search of forest habitats with Pedicularis or staying and failing to find their preferred host. Insects that stayed suffered reduction of realized fecundity after delayed oviposition on Collinsia. Those that emigrated suffered even greater fitness penalty from consistently low offspring survival on Pedicularis. Paradoxically, most emigrants reduced both their own fitness and that of the recipient populations by dispersing from a benign natal habitat to which they were maladapted into a more demanding habitat to which they were well-adapted. “Matching habitat choice” reduced fitness when evolutionary lag rendered traditional cues unreliable in a changing environment

    Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming

    Get PDF
    The climate-sensitive butterfly Euphydryas editha exhibited interpopulation variation in both phenology and egg placement, exposing individuals to diverse thermal environments. We measured 'eggspace' temperatures adjacent to natural egg clutches in populations distributed across a range of latitudes (36°8'-44°6') and altitudes (213-3171 m). Eggs laid > 50 cm above the ground averaged 3.1°C cooler than ambient air at 1 m height, while eggs at < 1 cm height averaged 15.5°C hotter than ambient, ranging up to 47°C. Because of differences in egg height, eggs at 3171 m elevation and 20.6°C ambient air experienced mean eggspace temperatures 7°C hotter than those at 213 m elevation and ambient 33.3°C. Experimental eggs survived for one hour at 45°C but were killed by 48°C. Eggs laid low, by positively geotactic butterflies, risked thermal stress. However, at populations where eggs were laid lowest, higher oviposition would have incurred incidental predation from grazers. Interpopulation variation in phenology influenced thermal environment and buffered exposure to thermal stress. At sites with hotter July temperatures, the single annual flight/oviposition period was advanced such that eggs were laid on earlier dates, with cooler ambient temperatures. The insects possessed two mechanisms for advancing egg phenology; they could advance timing of larval diapause-breaking and/or shorten the life cycle by becoming smaller adults. Mean weight of newly-eclosed females varied among populations from 92 to 285 mg, suggesting that variable adult size did influence phenology. Possible options for in situ mitigation of thermal stress include further advancing phenology and raising egg height. We argue that these options exist, as evidenced by current variation in these traits and by failure of E. editha to conform to restrictive biogeographic constraints, such as the expectation that populations at equatorial and poleward range limits be confined to higher and lower elevations, respectively. This optimistic example shows how complex local adaptation can generate resilience to climate warming

    Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?

    Get PDF
    The butterfly Euphydryas editha is known to be vulnerable to climate events that exacerbate natural phenological asynchrony between insect and hosts. In prior work, populations of E. editha have been more persistent at high latitudes and high elevations than in the south and at low elevations, consistent with response to observed warming climate. However, poleward range shifts by the endangered subspecies E. e. quino are blocked by urbanization and range shifts to higher elevation may require host shifts. Prior studies were inconclusive as to whether elevational and host shifts were already occurring. Here, we re-evaluate this scenario with new evidence from molecular genetics, host-choice behaviour and field recording of butterfly distribution. We found a statistically significant upward shift in population distribution since 2009. Insects in the expanding region were neither genomic outliers within Quino nor specifically adapted to their principal local host genus, Collinsia. These diverse data collectively support the hypothesis that an elevational range expansion is already in progress, accompanied and facilitated by a shift of principal host from Plantago to Collinsia. Quino appears resilient to warming climate. However, projections indicate that most or all of Quino’s current range in the USA, including the new high elevation expansion, will become uninhabitable. Our most frequent projected future range (circa 2050) is c. 400 km northward from current populations, hence conservation of Quino may eventually require assisted colonization. For now, Critical Habitat (sensu Endangered Species Act) has been designated at sites around the new upper elevational limit that were not known to be occupied. Designating Critical Habitat outside the historic range is a pioneering response to climate change. This politically challenging, non-traditional, climate change-oriented conservation effort exemplifies flexible thinking needed for species vulnerable to climate change

    Robot rights? Towards a social-relational justification of moral consideration \ud

    Get PDF
    Should we grant rights to artificially intelligent robots? Most current and near-future robots do not meet the hard criteria set by deontological and utilitarian theory. Virtue ethics can avoid this problem with its indirect approach. However, both direct and indirect arguments for moral consideration rest on ontological features of entities, an approach which incurs several problems. In response to these difficulties, this paper taps into a different conceptual resource in order to be able to grant some degree of moral consideration to some intelligent social robots: it sketches a novel argument for moral consideration based on social relations. It is shown that to further develop this argument we need to revise our existing ontological and social-political frameworks. It is suggested that we need a social ecology, which may be developed by engaging with Western ecology and Eastern worldviews. Although this relational turn raises many difficult issues and requires more work, this paper provides a rough outline of an alternative approach to moral consideration that can assist us in shaping our relations to intelligent robots and, by extension, to all artificial and biological entities that appear to us as more than instruments for our human purpose

    Lethal trap created by adaptive evolutionary response to an exotic resource

    Get PDF
    International audienceGlobal transport of organisms by humans provides novel resources to wild species, which often respond maladaptively. Native herbivorous insects have been killed feeding on toxic exotic plants, which acted as ‘ecological traps’1,2,3,4. We document a novel ‘eco-evolutionary trap’ stemming from the opposite effect; that is, high fitness on an exotic resource despite lack of adaptation to it. Plantago lanceolata was introduced to western North America by cattle-ranching. Feeding on this exotic plant released a large, isolated population of the native butterfly Euphydryas editha from a longstanding trade-off between maternal fecundity and offspring mortality. Because of this release—and despite a reduced insect developmental rate when feeding on this exotic—Plantago immediately supported higher larval survival than did the insects’ traditional host, Collinsia parviflora5. Previous work from the 1980s documented an evolving preference for Plantago by ovipositing adults6. We predicted that if this trend continued the insects could endanger themselves, because the availability of Plantago to butterflies is controlled by humans, who change land management practices faster than butterflies evolve6. Here we report the fulfilment of this prediction. The butterflies abandoned Collinsia and evolved total dependence on Plantago. The trap was set. In 2005, humans withdrew their cattle, springing the trap. Grasses grew around the Plantago, cooling the thermophilic insects, which then went extinct. This local extinction could have been prevented if the population had retained partial use of Collinsia, which occupied drier microhabitats unaffected by cattle removal. The flush of grasses abated quickly, rendering the meadow once again suitable for Euphydryas feeding on either host, but no butterflies were observed from 2008 to 2012. In 2013–2014, the site was naturally recolonized by Euphydryas feeding exclusively on Collinsia, returning the system to its starting point and setting the stage for a repeat of the anthropogenic evolutionary cycle

    Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Until recently the isolation of microsatellite markers from Lepidoptera has proved troublesome, expensive and time-consuming. Following on from a previous study of Edith's checkerspot butterfly, Euphydryas editha, we developed novel microsatellite markers for the vulnerable marsh fritillary butterfly, E. aurinia. Our goal was to optimize the process in order to reduce both time and cost relative to prevailing techniques. This was accomplished by using a combination of previously developed techniques: in silico mining of a de novo assembled transcriptome sequence, and genotyping the microsatellites found there using an economic method of fluorescently labelling primers. PRINCIPAL FINDINGS: In total, we screened nine polymorphic microsatellite markers, two of which were previously published, and seven that were isolated de novo. These markers were able to amplify across geographically isolated populations throughout Continental Europe and the UK. Significant deviations from Hardy-Weinberg equilibrium were evident in some populations, most likely due to the presence of null alleles. However, we used an F(st) outlier approach to show that these markers are likely selectively neutral. Furthermore, using a set of 128 individuals from 11 populations, we demonstrate consistency in population differentiation estimates with previously developed amplified fragment length polymorphism (AFLP) markers (r = 0.68, p<0.001). SIGNIFICANCE: Rapid development of microsatellite markers for difficult taxa such as Lepidoptera, and concordant results with other putatively neutral molecular markers, demonstrate the potential of de novo transcriptional sequencing for future studies of population structure and gene flow that are desperately needed for declining species across fragmented landscapes.BBSRCOkinawa Institute for Science and Technology (OIST

    Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults

    Get PDF
    Importance:Telomere length is associated with the development of age-related diseases and structural differences in multiple brain regions. It remains unclear, however, whether change in telomere length is linked to brain structure change, and to what extent telomere length can be influenced through mental training. Objectives:To assess the dynamic associations between leukocyte telomere length (LTL) and cortical thickness (CT), and to determine whether LTL is affected by a longitudinal contemplative mental training intervention. Design, Setting, and Participants:An open-label efficacy trial of three 3-month mental training modules with healthy, meditation-naive adults was conducted. Data on LTL and CT were collected 4 times over 9 months between April 22, 2013, and March 31, 2015, as part of the ReSource Project. Data analysis was performed between September 23, 2016, and June 21, 2019. Of 1582 eligible individuals, 943 declined to participate; 362 were randomly selected for participation and assigned to training or retest control cohorts, with demographic characteristics matched. The retest control cohorts underwent all testing but no training. Intention-to-treat analysis was performed. Interventions:Training cohort participants completed 3 modules cultivating interoception and attention (Presence), compassion (Affect), or perspective taking (Perspective). Main Outcomes and Measures:Change in LTL and CT. Results:Of the 362 individuals randomized, 30 participants dropped out before study initiation (initial sample, 332). Data were available for analysis of the training intervention in 298 participants (n = 222 training; n = 76 retest control) (175 women [58.7%]; mean [SD] age, 40.5 [9.3] years). The training modules had no effect on LTL. In 699 observations from all 298 participants, mean estimated changes in the relative ratios of telomere repeat copy number to single-copy gene (T/S) were for no training, 0.004 (95% CI, -0.010 to 0.018); Presence, -0.007 (95% CI, -0.025 to 0.011); Affect, -0.005 (95% CI, -0.019 to 0.010); and Perspective, -0.001 (95% CI, -0.017 to 0.016). Cortical thickness change data were analyzed in 167 observations from 67 retest control participants (37 women [55.2%], mean [SD] age, 39.6 [9.0] years). In this retest control cohort subsample, naturally occurring LTL change was related to CT change in the left precuneus extending to the posterior cingulate cortex (mean t161 = 3.22; P < .001; r = 0.246). At the individual participant level, leukocyte telomere shortening as well as lengthening were observed. Leukocyte telomere shortening was related to cortical thinning (t77 = 2.38; P = .01; r = 0.262), and leukocyte telomere lengthening was related to cortical thickening (t77 = 2.42; P = .009; r = 0.266). All analyses controlled for age, sex, and body mass index. Conclusions and Relevance:The findings of this trial indicate an association between short-term change in LTL and concomitant change in plasticity of the left precuneus extending to the posterior cingulate cortex. This result contributes to the evidence that LTL changes more dynamically on the individual level than previously thought. Further studies are needed to determine potential long-term implications of such change in relation to cellular aging and the development of neurodegenerative disorders. No effect of contemplative mental training was noted in what may be, to date, the longest intervention with healthy adults. Trial Registration:ClinicalTrials.gov identifier: NCT01833104

    Mitochondria dysfunction is associated with long-term cognitive impairment in an animal sepsis mode

    Get PDF
    Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis. Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7–9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function. Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors. Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment

    Exoplanets and SETI

    Full text link
    The discovery of exoplanets has both focused and expanded the search for extraterrestrial intelligence. The consideration of Earth as an exoplanet, the knowledge of the orbital parameters of individual exoplanets, and our new understanding of the prevalence of exoplanets throughout the galaxy have all altered the search strategies of communication SETI efforts, by inspiring new "Schelling points" (i.e. optimal search strategies for beacons). Future efforts to characterize individual planets photometrically and spectroscopically, with imaging and via transit, will also allow for searches for a variety of technosignatures on their surfaces, in their atmospheres, and in orbit around them. In the near-term, searches for new planetary systems might even turn up free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor additions and modification
    corecore