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                             Geographic mosaics of phenology, host preference, adult size and 
microhabitat choice predict butterfl y resilience to climate warming      

    Nichole L.     Bennett  ,       Paul M.     Severns  ,       Camille     Parmesan     and         Michael C.     Singer           

  N. L. Bennett, Dept of Integrative Biology, Univ. of Texas, Austin, TX 78712, USA.  –  P. M. Severns, School of Biological Science, Washington 
State Univ.-Vancouver, WA 98686, USA.  –  C. Parmesan, Marine Inst., Plymouth Univ., Plymouth, UK, and Dept of Geology, Jackson School 
of Geosciences, Univ. of Texas at Austin, TX 78712, USA.  –  M. C. Singer (michael.singer@plymouth.ac.uk), School of Biological Sciences, 
Plymouth Univ., Drake Circus, Plymouth ,  Devon, PL4 8AA,  UK.                             

  Th e climate-sensitive butterfl y  Euphydryas editha  exhibited interpopulation variation in both phenology and egg 
placement, exposing individuals to diverse thermal environments. We measured  ‘ eggspace ’  temperatures adjacent to natu-
ral egg clutches in populations distributed across a range of latitudes (36 ° 8 ′  – 44 ° 6 ′ ) and altitudes (213 – 3171 m). Eggs 
laid    �    50 cm above the ground averaged 3.1 ° C cooler than ambient air at 1 m height, while eggs at    �    1 cm height aver-
aged 15.5 ° C hotter than ambient, ranging up to 47 ° C. Because of diff erences in egg height, eggs at 3171 m elevation 
and 20.6 ° C ambient air experienced mean eggspace temperatures 7 ° C hotter than those at 213 m elevation and ambient 
33.3 ° C. Experimental eggs survived for one hour at 45 ° C but were killed by 48 ° C. Eggs laid low, by positively geotactic 
butterfl ies, risked thermal stress. However, at populations where eggs were laid lowest, higher oviposition would have 
incurred incidental predation from grazers.  

  Interpopulation variation in phenology infl uenced thermal environment and buff ered exposure to thermal stress. 
At sites with hotter July temperatures, the single annual fl ight/oviposition period was advanced such that eggs were laid on 
earlier dates, with cooler ambient temperatures. Th e insects possessed two mechanisms for advancing egg phenology; they 
could advance timing of larval diapause-breaking and/or shorten the life cycle by becoming smaller adults. Mean weight 
of newly-eclosed females varied among populations from 92 to 285 mg, suggesting that variable adult size did infl uence 
phenology.  

  Possible options for in situ mitigation of thermal stress include further advancing phenology and raising egg height. 
We argue that these options exist, as evidenced by current variation in these traits and by failure of  E. editha  to conform 
to restrictive biogeographic constraints, such as the expectation that populations at equatorial and poleward range limits 
be confi ned to higher and lower elevations, respectively. Th is optimistic example shows how complex local adaptation can 
generate resilience to climate warming.   

 Th e magnitude of biological response to current climate 
change is extremely variable, even among species living in 
the same habitat (Parmesan et   al. 1999, Willis et   al. 2008, 
Th ackeray et   al. 2010, Yang et   al. 2011, Ellwood et   al. 2012, 
DeVictor et   al. 2012). Camoufl aged within observed mean 
global trends of shifts in range and phenology (Crick and 
Sparks 1999, Parmesan and Yohe 2003, Root et   al. 2003, 
Parmesan 2006, Hickling et   al. 2006, Chen et   al. 2011, 
Poloczanska et   al. 2013) are a substantial number of species 
showing no response at all and a minority showing changes 
in the opposite direction to those expected from regional 
warming (Gienapp et   al. 2006, Parmesan 2007, Th ackeray 
et   al. 2010, Cook et   al. 2012). Functional groups with strong 
interactions, such as plants, insects and birds, are respond-
ing diff erently to the same climate experiences (Parmesan 
2007, Th ackeray et   al. 2010, Ellwood et   al. 2012, DeVictor 
et   al. 2012). Integrating the factors that underlie the 
current diversity of climate change response (Forrest and 

Miller-Rushing 2010, Hoff mann and Sgro 2011, Diez et   al. 
2012) will improve our ability to predict responses to future 
climate warming and develop appropriate conservation 
strategies (Dawson et   al. 2011, Pettorelli 2012). 

 One way to address this complexity is by seeking a mech-
anistic understanding of the traits involved in thermal adap-
tation of species representing particular functional groups 
(Buckley et   al. 2011, Chown 2012, Sinclair et   al. 2012). 
Physiological research will contribute part of this; however, 
for animals capable of changing their microclimates through 
behavior, understanding of thermal ecology will require a 
behavioral as well as a physiological component. For instance, 
it will be necessary to include habitat choice in predictions of 
climate change response, since this choice aff ects an organ-
ism ’ s experience of microclimate (Andrewartha and Birch 
1954, Blondel 1985, Weiss et   al. 1988, Th omas et   al. 1999, 
2001, Boughton 1999, Martin 2001, Ashton et   al .  2009, 
Suggitt et   al. 2011, 2012, Lawson et   al. 2012). 
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 No matter whether active behavioral choices or 
survival diff erences among microsites drive habitat 
associations, we expect thermally constrained organ-
isms to occur in locally warmer microclimates towards 
higher latitudes or elevations. Field observations support 
this expectation. In Evolution Canyon in Israel, warm-
adapted species and genotypes of bacteria, fungi, rodents, 
trees and fruit fl ies were distributed on south-facing 
slopes while cool-adapted forms occurred principally on 
the opposite canyon walls (reviewed by Nevo 2012). In 
the San Gabriel Mountains of southern California, two 
lizard species with nearly identical thermal physiologies 
adjusted their behavior with increasing elevation to achieve 
similar microhabitat temperatures:  Sceloporus occidenta-
lis  was almost completely arboreal at low elevation, and  
S. graciosus  was mainly ground-dwelling at high elevation; 
lizards of both species were partly arboreal, partly ground-
dwelling at intermediate elevations (Adolph 1990). Th e 
butterfl y  Aporia crataegi  changed its microhabitat choice 
with elevation, laying eggs on the cool north-facing sides 
of host plant bushes at low elevation and on the warm 
south-facing sides at higher altitudes, achieving the 
same egg temperatures at both elevations (Merrill et   al. 
2008). Another butterfl y,  Hesperia comma , was restricted 
to south-facing slopes with low vegetation height at its 
poleward range margin. Th is distribution buff ered the 
infl uence of cool climate and was achieved partly by ovi-
position preference for warm hosts (Davies et   al. 2006) 
and partly by thermally-biased local extinctions (Lawson 
et   al. 2012). Th ese examples suggest that we can help pre-
dict responses to climate change by understanding how 
variation in habitat utilization aff ects overall experience 
of climate. 

 Th e present work investigates thermal ecology and 
microclimate experience of the North American Nympha-
lid butterfl y  Euphydryas editha , with the aim of better 
understanding and predicting its responses to anthropogenic 
climate change.  

  Table 1. Population and site data. Column 2 – 4 give geographical information.  ‘ Peak fl ight season month ’  is the month of peak oviposition 
in most years (month of peak oviposition in typical years given, with occasional earlier/later months shown within parentheses).  ‘ Flight 
season temp ’  is the mean maximum temperature, from PRISM, in the most frequent month of peak oviposition.  ‘ Mean daily max July ’  is 
the mean maximum temperature in July, normally the hottest month.  ‘ Phenological mitigation ’  is an estimate of the cooling achieved by 
advancing the fl ight season earlier than July. It is obtained by simply subtracting fl ight season temp from the July mean maximum.  

Population name Elevation   (m) Longitude Latitude
Peak   fl ight 

season   month
Flight season 

temp   ( ° C)
Mean daily 

max   July   ( ° C)
Phenological 

  mitigation   ( ° C)

San Diego 198 116 ° 91 ’ 32 ° 63 ’ March   (April) 19.9 33.2 13.3
Pozo 533 120 ° 48 ’ 35 ° 30 ’ (May)   June 28.9 31.9 3.0
Piute Mt 2465 118 ° 42 ’ 35 ° 45 ’ June 24.6 27.1 2.5
Big Mdws 2382 118 ° 39 ’ 35 ° 89 ’ June 18.2 22.0 3.7
Rabbit Mdw 2383 118 ° 87 ’ 36 ° 75 ’ (June)   July 23.0 23.0 0
Yucca Point 1250 118 ° 89 ’ 36 ° 83 ’ (April) May 20.4 30.1 9.8
Tamarack 2309 119 ° 23 ’ 37 ° 16 ’ June 20.2 24.1 3.9
Dunderberg 3171 119 ° 31 ’ 38 ° 07 ’ July 17.9 17.9 0
Bircham Flat 1900 119 ° 45 ’ 38 ° 45 ’ (April) May 17.6 27.2 9.6
Leek Spring 2200 120 ° 25 ’ 38 ° 64 ’ June (July) 19.3 23.0 3.7
Mt Tallac 2400 120 ° 10 ’ 38 ° 89 ’ July 19.7 19.8 0
Gold Lake 2073 120 ° 67 ’ 39 ° 67 ’ July 24.2 24.2 0
Illinois River Rd 457 123 ° 68 ’ 42 ° 28 ’ April 16.6 30.3 13.7
Deer Creek 450 123 ° 68 ’ 42 ° 28 ’ July 30.3 30.3 0
Cardwell Hill 213 123 ° 36 ’ 44 ° 59 ’ May 18.2 25.3 7.1

 Study system 

  Euphydryas editha  is a non-migratory species that ranges 
through the western United States, western Canada, and 
northwestern Baja California (Parmesan 1996, Ehrlich and 
Hanski 2004). Within our current study area, across Califor-
nia and southern Oregon,  E. editha  occurs widely scattered 
in isolated populations and metapopulations, in climates 
ranging from the fringe of the Mojave desert (at Walker 
Pass, Inyo County, California) to continuously-waterlogged 
fen (Deer Creek, Josephine County, Oregon, Table 1) and 
at elevations ranging from sea cliff s through coniferous for-
est around 2000 m (Rabbit Meadow and Tamarack Ridge, 
Table 1) to arctic-alpine tundra at over 3000 m (Dunderberg 
Peak, Table 1). 

  Euphydryas editha  is always univoltine, with a single 
generation per year and a  ‘ fl ight season ’  lasting three to fi ve 
weeks when adults are active and eggs are laid. Eggs hatch 
after about two weeks and larvae must feed for two more 
weeks before they enter an obligate diapause lasting seven to 
ten months. Choice of oviposition site is critical to egg and 
larval survival; neonate larvae do not travel far from the ovi-
position site and normally begin feeding on the plant chosen 
by their mother or on a nearby plant. As pre-diapause larvae 
develop, their ability to search and fi nd hosts increases rap-
idly (Hellmann 2002), while post-diapause larvae normally 
wander in search of food, often feeding on seedlings rather 
than on the individual plant chosen by their mother. 

 Principal host plants of the butterfl y belong to the fami-
lies Plantaginaceae ( Collinsia, Plantago, Penstemon)  and 
Orobanchaceae ( Pedicularis, Castilleja) . Butterfl ies in our 
study area oviposit on their principal host plant genera in 
a complex spatial mosaic (Singer and Wee 2005, Singer and 
McBride 2012, Mikheyev et   al. 2013). Th is variation in host 
affi  liation is driven principally by heritable diff erences among 
populations in oviposition preference (Singer and Parmesan 
1993, Singer and McBride 2012). Similar interpopulation 
variation occurs in other heritable traits, including adult 
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size (Singer et   al. 1995), clutch size (Singer and McBride 
2010), and the height above the ground at which eggs are 
laid (McBride and Singer 2010).   

 Climate sensitivity of  E. editha  

  Euphydryas editha  populations vary dramatically in phenol-
ogy (Table 1). Peak fl ight, when most eggs are laid, can be 
in any month from March to July. At least some of this phe-
nological variation is forced upon the insects, since montane 
habitats are still under snow in March when butterfl ies are 
fl ying at some low-elevation sites (cf Gutierrez Illan et   al. 
2012). In most montane habitats larvae diapause through 
late summer, fall and winter, fi nally breaking diapause at the 
melting of winter snowpack .  Adults emerge about a month 
after snowmelt and females start laying eggs 2 – 3 days after 
eclosion. In contrast, larvae at many low elevation sites 
diapause through summer, break diapause in winter, and 
produce adults in March or April (Singer and Parmesan 
2010). However, exceptions occur: at some low-elevation 
sites, represented in our study by Deer Creek and Pozo 
(Table 1), larvae prolong their diapause through winter 
and most of spring, refraining from feeding as soon as food 
becomes available and producing butterfl ies in June/July 
rather than March/April. 

 Past observations indicate that at least some populations 
of  E. editha  have been highly climate-sensitive (reviewed by 
Singer and Parmesan 2010) and subject to climate-induced 
population extinctions (Ehrlich et   al. 1980, Th omas et   al. 
1996, McLaughlin et   al .  2002). Patterns of population 
extinction and persistence, obtained by comparing distribu-
tion in the early 1990s with prior data, showed signifi cant 
latitudinal and elevational shifts in the species ’  center of 
abundance that matched predictions from warming climate 
(Parmesan 1996). 

 Th e extensive variation of habitat type, habitat loca-
tion, and phenology among populations of  E. editha  should 
expose individuals to very diff erent thermal environments. 
Documented variation among populations in egg placement 
by adults resulted in very diff erent egg heights above the 
ground (Singer and McBride 2010) and also seemed likely to 
aff ect thermal environments for eggs and neonate larvae, life 
stages that are potentially vulnerable to heat stress because 
of their immobility. Here, we concentrated on the egg stage 
in order to assess the current range of thermal environments 
encountered by  E. editha  in diff erent habitats and the poten-
tial for insect response to future climate warming. We did 
not investigate the possibility that physiological tolerance 
of eggs to high temperature might evolve, and our study 
assumed the absence of such evolution.   

 Relationships between thermal ecology and climate 
change resilience 

 At the population level, resilience depends on the ability 
of the insects to minimize eff ects of climate warming on 
eggspace temperatures by placing eggs in cooler microsites. 
To assess this ability, we fi rst ask whether populations in the 
hottest environments have already evolved to place eggs in 
the coolest microsites or whether alternate microsites might 

exist, on current hosts or on alternative potential hosts, that 
would allow cooler eggspace temperatures. Next, we ask 
whether our study populations might modify their phenol-
ogy to allow oviposition in cooler months. One way to mod-
ify oviposition phenology would be to retain the same life 
cycle length but to shift larval feeding into currently-unused 
time periods in which hosts are available; accordingly, we 
ask whether such unused time periods exist. Another way 
to modify oviposition phenology would be to shorten the 
life cycle to produce smaller adult insects at earlier dates; 
to assess this possibility, we examine current variability of 
adult size. 

 At the species level, we hypothesize that, if our study 
species lacked climate resilience, it would follow biogeo-
graphic patterns refl ecting climate constraints. For example, 
thermally-constrained populations in lower latitudes should 
be forced to higher elevations and those at high latitudes 
should be forced to lower elevations. Insects in hotter cli-
mates should be forced to lay eggs on earlier dates and in 
cooler microsites. We ask to what extent the observed 
biogeographic patterns of  E. editha  imply these potential 
constraints.   

 Questions addressed 

 We posed the following sets of questions: 

  1) Questions about phenology  
 How does phenology of fl ight season (and hence of oviposi-
tion) vary among our study sites? What are the consequences 
of this variation for ambient air temperatures during the 
period of egg development and for potential exposure of eggs 
to thermal stress? 
  2) Questions about egg placement  
 Given the ambient air temperatures that result from each 
population’s phenology, how does among-population varia-
tion in egg placement (specifi cally egg height above the 
ground) aff ect  ‘ eggspace ’  temperatures, the temperatures to 
which eggs are actually exposed? Might egg placement expose 
eggs to potentially lethal temperatures, and does this possi-
bility imply climate-caused natural selection on egg height? 
If so, can predator-mediated natural selection on the same 
trait, egg height, complement or oppose the climate-caused 
selection? 
  3) Questions about resilience to future climate warming  
 At the level of the population, what options do our study 
insects have for in situ adaptation to warming climate? 
At the species level, to what extent do overall biogeographic 
patterns imply climate-imposed constraints that predict 
future resilience, or lack of it?    

 Methods  

 Phenology and its thermal consequences 

 Using a combination of our own observations and museum 
records accumulated by Parmesan (1996), we recorded 
the identity of the month of peak fl ight (and hence peak 
oviposition) in 15  Euphydryas editha  populations (Table 1) 
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distributed across a wide range of latitudes (11 ° 9 ′  degrees) 
and altitudes (from less than 200 m to greater than 3000 m 
elevation). 

 We obtained climate data for each site from the PRISM 
climate mapping system (PRISM Climate Group 2004). 
PRISM is an acronym for Parameter-elevation Regres-
sions on Independent Slopes Model, created by PRISM 
Climate Group, Oregon State University,  � http://prism.
oregonstate.edu � . PRISM is a continuously-updated, 
knowledge-based system utilizing point data, a digital 
elevation model, and expert knowledge of complex cli-
matic extremes, including rain shadows, coastal eff ects, 
and temperature inversions. Each PRISM value was taken 
from an 800    �    800 m grid cell (the smallest size available) 
centered on the target butterfl y population. For each site, 
we obtained mean daily maximum temperatures, averaged 
over the period 1970 – 2000 (a standard timeframe used in 
climate analyses), for two months: the month of July and 
the month of peak fl ight. For sites in which fl ight and ovi-
position could occur with equal probability in two months, 
we used the temperature for the hotter of those months. 
Hereafter, we abbreviate the mean daily maximum for the 
month of peak fl ight as  ‘ fl ight-season-temp ’  (Table 1). 

 We defi ned two new population-level variables and con-
ducted two diff erent analyses to investigate how population-
level traits aff ect thermal environments experienced by the 
egg stage. First, in order to estimate the eff ect of climate on 
local phenology of the insects we calculated  ‘ phenological 
advance ’  as the number of months between July and the 
month of peak fl ight at each site (Table 1). For example, 
phenological advance would be two months at a site with 
peak fl ight in May and zero at a site with peak fl ight in July. 
We then used a Spearman’s rank correlation test to seek an 
association between phenological advance at each site and 
the mean daily July maxima. Th is analysis asks whether the 
insects advanced their phenology more at sites where July 
temperatures were hotter. 

 Second, in order to estimate how phenological advance 
might aff ect thermal experience of the insects, we sub-
tracted fl ight-season-temp from the mean daily site max-
ima for the month of July. For brevity, we refer to the 
value obtained from this subtraction as  ‘ phenological 
mitigation ’ , since it should be related to the mitigation 
of thermal stress that the insects achieve through pheno-
logical advance at each site (Table 1). We tested for an 
eff ect of overall climate on phenological mitigation, again 
using a Spearman’s rank correlation to seek an association 
between phenological mitigation and the mean July maxi-
mum temperature. Th is second analysis entails a potential 
autocorrelation; if July temperatures were hotter at sites 
with a steeper gradient of temperature increase in spring, 
we would tend to fi nd a relationship between July tem-
peratures and our measure of phenological mitigation, 
independently of any response to climate by the insects. 
We include the analysis nonetheless, since it does estimate 
the extent to which phenological advance actually causes 
the insects to operate in lower ambient temperatures. 
We should not assume that phenological mitigation can 
be simply deduced from phenological advance, since the 
rate of warming from spring to summer is variable among 
sites and faster at sites that are farther from the coast. 

 Finally, we also used Spearman’s rank correlation to 
analyze associations between fl ight-season-temp and egg 
height, site elevation, and site latitude. All statistical testing 
was conducted in R ver. 3.0.2 ( � www.R-project.org/ � ).   

 Egg heights, eggspace temperatures and thermal 
tolerance 

 We visited eight of our 15 study sites during the seasons when 
eggs were present, and we searched host plants for natural 
egg clusters. We measured the height above the ground of 
each egg clutch. At fi ve sites, we also measured the maximum 
height of each host plant bearing eggs. During the hottest 
part of the day (between 11:00 a.m. and 3:00 p.m.) we used 
a fi ne, low-thermal-capacity thermocouple to make instanta-
neous measurements of  ‘ eggspace temperatures ’ , i.e. air tem-
peratures within 1 – 2 mm of each egg clutch. Immediately 
after each recording, we measured ambient air temperatures 
directly above the eggs at one-meter height, shielded from 
direct sunlight. In one population (Deer Creek), eggs were 
often laid at heights of around one meter, in which case 
we measured ambient air temperature at one-meter height, 
laterally displaced from the position of the eggs by around 
0.3 m. We used a Spearman ’ s rank correlation to test whether 
the temperature diff erences between eggspace and ambient 
temperature were signifi cantly correlated with egg height on 
the plants.  

 Thermal tolerance 
 Field data indicated that temperatures up to 47 ° C occurred 
in the immediate environments of eggs in the fi eld. Using 
this value as a starting point, we measured survival rates of 
eggs exposed for one hour to 45 ° C, 46 ° C, 47 ° C, 48 ° C and 
50 ° C. Eggs were obtained as  ‘ families ’  (i.e. groups of sib-
lings) when clutches were laid by butterfl ies captured in the 
fi eld in June 2012 at two sites, Tamarack Ridge and Piute 
Mountain, both of which featured in the egg temperature 
recordings. We used twelve families from Tamarack and four 
from Piute. For each trial we placed four to six sibling eggs 
into a small, thin-walled glass vial with a 5 mm square of 
 Plantago lanceolata  leaf to maintain humidity. We placed the 
vials in an incubator already at the chosen temperature for 
the trial. We waited for the temperature to return to the set 
value and exposed the vials containing eggs to the set tem-
perature for an hour. We then opened the incubator, allowed 
the vials to cool and measured egg survival from the eventual 
hatching of larvae. Due to equipment failure, we were only 
able to complete the 45 ° C, 48 ° C and 50 ° C trials.   

 Incidental predation by grazers 
 At several sites, grazers started eating the top of a  
Pedicularis semibarbata  plant and reduced its height by 
removing the upper portions of leaves; sometimes just a 
small portion, sometimes the entire leaf (Supplementary 
material Appendix 1 Fig. 1). Prior observations indicated that 
grazing did not normally commence prior to the checkerspot 
fl ight season. Th erefore, we assumed that cumulative grazing 
damage, recorded at a time when most eggs had hatched, 
approximated the exposure of eggs to grazing. At two sites 
where  P. semibarbata  was abundant and used by  E. editha , 
we censused randomly located quadrats and recorded the 
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numbers of plants shortened by grazers and the numbers 
of plants left intact. Likewise, we recorded the proportion 
of  Collinsia torreyi  plants clipped short by grazers at three 
sites. At one of the sites, Rabbit, we recorded grazing on 
both hosts, including censuses on  C. torreyi  in both 1999 
and 2006. Rapid evolution of butterfl y diet has occurred at 
this site (Singer et   al. 1993), as a result of which  C. torreyi  
was a host of the insects in 1999 but not in 2006. 

 We compressed each host, year and site combination into 
a single data point and used a Mann – Whitney rank test to 
determine whether the proportion of grazed  P. semibarbata  
was signifi cantly diff erent from the proportion of grazed  
C. torreyi.  An earlier census in which plants were marked 
and followed through the season had shown that a small 
proportion of plants of both species were completely removed 
by herbivores. Such removal is irrelevant to our current 
considerations, since natural selection on egg height should 
be unaff ected by it.   

 Options that could increase resilience to climate change 
 To explore potential options for each population to adapt 
in situ to near-term anthropogenic climate change, we con-
ducted a series of measures. One potential option could be 
to adjust adult size. To illustrate the range of variation of 
adult butterfl y sizes existing in nature, we weighed newly-
eclosed female  E. editha  from two of our current study sites 
(Rabbit Meadow and Cardwell Hill), a third site (Gardisky 
Lake) lying within 3 km of our study site at Dunderberg, 
and a fourth site (Morgan Hill) representing the Bay Check-
erspot, a much-studied low-elevation ecotype of  E. editha  
(Ehrlich and Hanski 2004). Th is suggests that the potential 
for advancing phenology by reducing adult size at any par-
ticular site might be estimated from the diff erence between 
current mean adult size at the target site and the smallest 
mean size observed across our study populations. 

 Next, to ask what unused phenological options may be 
open to the insects, we recorded the presence and absence of 
apparently-usable time periods outside those in which larvae 
were observed to be active. By  ‘ apparently-usable ’ , we mean 
time periods with temperatures warm enough to permit 
insect activity in which hosts were present with foliage of an 
age that larvae normally consume. In some cases, phenologi-
cal changes might require host shifts to plants that were not 
used currently by the insects at the focal site but served as 
principal hosts of  E. editha  at other sites. In order to describe 
this situation we classifi ed such plants as  ‘ potential hosts ’ . We 
then recorded whether actual or potential hosts were present 
and available at times when the insects did not use them. 
Actual or potential hosts available before larvae had emerged 
from diapause were classifi ed as  ‘ early hosts ’ . Conversely,  ‘ late 
hosts ’  were hosts still phenologically available after young 
larvae had ceased feeding and entered diapause. 

 Th ird, in order to ask whether unused physical space 
might provide refuge from thermal stress, we asked whether 
eggs in each population could have been laid at cooler micro-
sites (i.e. higher than they were) on the same plants. At fi ve 
populations, we measured the total heights of plants bearing 
eggs, as well as the heights of the eggs on the same plants. 

 Finally, we used a Spearman ’ s rank correlation test to 
test the relationship between elevation and latitude that is 
expected from constraints imposed by climate (i.e. we expect 

insects to occupy low elevations at high latitude and high 
elevations at low latitude). In addition to our study sites 
(which were mostly situated close to the range center), we 
also recorded the elevations and latitudes of the ten sites 
closest to the known poleward and equatorial species ’  range 
limits.     

 Results  

 Phenology and its consequences 

 Th e month of peak fl ight varied among our study sites 
between March and July (Table 1). Phenological advance, the 
displacement of peak fl ight month from July, was positively 
correlated with July mean maximum temperatures (Fig. 1a; 
Spearman ’ s rank correlation: rho(13)    �    0.609, p    �    0.016). 
However, when we removed two sites at which later ovi-
position was impossible because hosts were unavailable 
(Bircham Flat and Illinois River Rd, Table 2), this correla-
tion fell short of statistical signifi cance (Spearman ’ s rank 
correlation: rho(11)    �    0.548, p    �    0.053). 

 As a result of the association between July temperatures 
and phenological advance, we also found a signifi cant associ-
ation between the July mean daily maxima and phenological 
mitigation, the extent to which the insects reduced exposure 
to high egg temperatures by early fl ight (Fig. 1b; Spearman ’ s 
rank correlation: rho(13)    �    0.535, p    �    0.040). However, 
this relationship also lost signifi cance when data from Bir-
cham Flat and Illinois River Rd were excluded (Spearman ’ s 
rank correlation: rho(11)    �    0.452, p    �    0.12). 

 Among the fi fteen core study populations, we found 
no signifi cant association between fl ight-season-temp and 
either latitude (Fig. 2) or altitude (Fig. 3) (Spearman ’ s 
rank correlation: rho(13)    �     – 0.315, p    �    0.25 for latitude, 
rho(13)    �     – 0.021, p    �    0.94 for altitude).   

 Egg heights, eggspace temperatures, and thermal 
tolerance 

 Irrespective of the host genus used, eggspace temperatures 
decreased with increasing height, with hotter temperatures 
near the ground. Temperature diff erence between eggspace 
and ambient was signifi cantly correlated with egg height 
on the plant (Fig. 4, Table 3; Spearman ’ s rank correlation: 
rho(130)    �     – 0.850, p    �    0.001). Th e majority of eggs natu-
rally laid close to the ground existed in eggspaces with tem-
peratures ranging from 12 – 20 ° C above ambient, achieving 
levels in excess of 40 ° C when ambient temperatures were 
in the 20s. Our highest individual eggspace readings were 
44.4 ° C and 47.1 ° C at the Rabbit Meadow site. 

 We plotted fl ight-season-temp against egg placement and 
observed a slight trend for eggs to be laid higher (i.e. in cooler 
microhabitats) when they were exposed to hotter climates 
(Fig. 5). However, this trend fell well short of statistical signifi -
cance (Spearman ’ s rank correlation: rho(13)    �    0.318, p    �    0.25).  

 Thermal tolerance 
 Regardless of their population of origin (from either Piute or 
Tamarack) all eggs (n    �    16 families) survived an hour ’ s expo-
sure to 45 ° C and all were killed at both 48 ° C and 50 ° C.   
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  Figure 1.     (a)  ‘ Phenological advance ’ , i.e. the diff erence, measured 
in months, between July and the peak fl ight month (higher num-
bers    �    earlier fl ight) plotted against mean daily maximum tempera-
ture in July. Th e relationship is signifi cant using all data (p    �    0.016); 
but non-signifi cant when two populations with no options for later 
host use were removed (p    �    0.053). (b)  ‘ Phenological mitigation ’ , 
the diff erence between mean daily maximum temperature in July 
and mean daily maximum in the month of peak oviposition, 
plotted against July mean maximum temperatures.  

  Table 2. Phenological fi tting of  E. editha  into the season of host 
availability.  

Population name Early host Actual host Late host

San Diego NONE  Plantago  Cordylanthus/ 
   Antirrhinum 

Pozo  Pedicularis,  
   Plantago 

 Pedicularis  Pedicularis 

Piute Mt NONE  Cast/Pedic  Castilleja/ 
   Pedicularis 

Big Mdws NONE  Cast/Pedic  Castilleja/ 
   Pedicularis 

Rabbit Mdw NONE  Pedicularis  Pedicularis 
Yucca Point NONE  Collinsia  Castilleja 
Tamarack NONE  Collinsia  Castilleja/ 

   Pedicularis 
Dunderberg NONE  Castilleja  Castilleja  2 
Bircham Flat NONE  Collinsia NONE
Leek Spring NONE  Collinsia  Castilleja/ 

   Pedicularis 
Mt Tallac NONE 1  Cast/Pedic  Castilleja/ 

   Pedicularis  2 
Gold Lake  Castilleja/ 

   Collinsia/
  Pedicularis 

 Castilleja  Castilleja/ 
   Pedicularis  2 

Illinois River Rd NONE Collinsia NONE
Deer Creek  Castilleja  Castilleja  Castilleja 
Cardwell Hill  Plantago  Plantago  Plantago   

  1 At this site we have not directly observed that larvae break 
diapause as soon as weather and host availability permit, we deduce 
it from the combination of snow records, north-facing aspect of the 
slope and the fl ight season.   
  2 At these three sites the hosts indicated are available in most years 
after larvae have entered diapause; however, in two years during the 
period 1978 – 2014, late fl ight season caused by spring snowmelt 
may have reduced late host availability to near zero or less than 
zero, causing local extinctions.   

 Incidental predation by grazers 
 Pooling data from all observations (Table 4), we found 
44% of 460  Pedicularis semibarbata  plants were shortened 
by grazers that clipped the tops of the plants. Only 0.4% 
of 739  Collinsia torreyi  plants were similarly damaged. Th e 
diff erence between hosts was highly statistically signifi cant 

(Mann – Whitney rank test on proportion of plants grazed 
by host for each site/year combination: Z    �    2.76, two-tailed 
p    �    0.006). When we restricted analysis to plants censused 
at the same site and in the same year, we found that the same 
strong diff erences between the two hosts that appeared in the 
overall data appeared at Rabbit Meadow in 1999 and again 
in 2006 (Table 5).    

 Options available to increase resilience to climate 
change 

 Mean weights of newly-eclosed female  E. editha  were vari-
able among populations, ranging from around 92 to around 
285 mg (Table 6). 

 Actual or potential hosts present and available before 
larvae emerged from diapause ( ‘ early hosts ’ ) and those pres-
ent after all larvae had entered diapause ( ‘ late hosts ’ ) are 
recorded in Table 2. Where the  ‘ early host ’  or  ‘ late host ’  is 
the same as the  ‘ actual host ’ , a phenological shift could be 
achieved without a host shift; where the early or late hosts do 
not include the actual host, a host shift would be necessary 
for the insects to utilize the early or late time periods. Where 
Table 3 has an entry stating NONE, this indicates that no 
host would be available and that a phenological shift into the 
early or late time period would not be possible. 

 At Deer Creek, eggs were laid on infl orescences of  
Castilleja  close to the highest points of the plants. At the 
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  Figure 4.     Temperature diff erences between ambient, measured at 
1m height above the ground, and  ‘ eggspace temperatures ’  measured 
within 1 mm of natural egg clutches, plotted against egg height 
above the ground (mm). Data gathered from the eight study sites 
for which eggspace temperatures are listed in Table 4. Study sites are 
not distinguished in the plot: symbols indicate plant genera on 
which eggspace temperatures were measured. Separate clusters for 
the host genus  Castilleja  refl ect populations with diff erent oviposi-
tion heights. Th e x-axis is presented in log base 10 scale. Relation-
ship is signifi cant at p    �    0.001.  

other fourteen sites oviposition would be physically possible 
higher up on the plants. At seven of those sites eggs were laid 
at mean heights below 10 mm (Table 3), with the insects 
tucking their eggs under leaves as close as possible to the 
ground. At the remaining six sites the eggs were laid part-
way up the plants, with the possibility for them to be higher 
still. Table 6 shows mean egg heights and mean values of 
plant height minus egg height for individual egg clutches 
at fi ve sites. To illustrate the diff erence in egg placement on 
similar plants, we include photographs of typical natural egg 
clutches laid low on  Castilleja  at Gold Lake and high on  Cas-
tilleja  at Deer Creek. (Supplementary mareial Appendix 1 
Fig. A2). 

 Neither latitude nor altitude was signifi cantly cor-
related with mean eggspace temperatures (Spearman ’ s 
rank correlation: rho(6)    �     – 0.643, p    �    0.096 for latitude, 
rho(6)    �    0.643, p    �    0.096 for altitude). Th e identity of 
results from these two analyses is neither an error of calcula-
tion nor an error of typography; it is a genuine coincidence. 
In the larger dataset of 34 populations, augmented with 
those at range limits, there was a signifi cant positive correla-
tion between site latitude and elevation (Fig. 6: Spearman ’ s 
rank correlation rho(32)    �    0.4932, p    �    0.003). Th is result is 
in the opposite direction from the expected trend for popu-
lations to occupy higher elevations at lower latitudes.    
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  Table 3. Mean egg heights, eggspace temperatures and differences between eggspace temperatures and ambient air.  �  indicates 95% confi -
dence intervals for the means. Sample sizes (n) for ambient-eggspace differences are the same as for eggspace temperatures. Populations are 
listed from south to north.  

Population name Host   genus
Mean egg height 
(mm)    �    95% CI Egg Ht n

Mean   eggspace 
  temp. ( ° C)    �    95% CI

Eggspace 
temp. N

Mean ambient 
  temp. ( ° C)

Mean difference    
ambient/   eggspace 

  temp. ( ° C)

San Diego  Plantago 3.2    �    1.0 6
Pozo  Pedicularis 50    �    22 6
Piute Mt  Cast/Pedic 7.0    �    4.2 23 38.0    �    2.37 23 23.7 14.3    �    2.32
Big Mdws  Cast/Pedic 5.8    �    2.6 8
Rabbit Mdw  Cast/Pedic 8.2    �    2.7 42 40.0    �    1.68 23 23.4 16.3    �    1.81
Yucca Point  Collinsia 260    �    140 5
Tamarack  Collinsia 49    �    5.5 35 32.1    �    1.08 13 23.9 8.24    �    1.31
Dunderberg  Castilleja 2.5    �    1.3 6 37.4    �    5.35 6 20.6 16.8    �    4.34
Bircham Flat  Collinsia 4.9    �    3.3 7
Leek Spring  Collinsia 52    �    6.8 28 32.0    �    1.23 14 24.7 7.29    �    1.22
Mt Tallac  Cast/Pedic 43    �    43 5
Gold Lake  Castilleja 9.9    �    7.3 8 34.8    �    3.10 8 23.4 11.4    �    3.28
Illinois River  Collinsia 65    �    15 9
Deer Creek  Castilleja 450    �    31 34 30.5    �    0.84 34 33.3 �2.76    �    0.889
Cardwell Hill  Plantago 15    �    2.9 27 34.2    �    1.13 27 24.8 9.50    �    0.820
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  Figure 5.     Mean egg height (mm) in each population plotted against 
 ‘ fl ight-season-temp ’ , the mean daily maximum temperature at each 
site during the month of peak fl ight. Th e y-axis is presented in log 
base 10 scale. Relationship is non-signifi cant at p    �    0.25.  

  Table 4. Observations of natural grazing on hosts. Grazers are 
primarily deer that bite off the top portions of the plants, causing 
reductions in total plant height. Any eggs laid on the plant parts 
thereby removed would be incidentally killed. The proportion of 
plants grazed is signifi cantly higher on  Pedicularis  than on  Collinsia  
at p    �    0.006.  

Site Year Host
No. plants
  inspected

No. plants
  grazed

Rabbit 1988  Pedicularis 27 10
Rabbit 1999  Pedicularis 164 105
Rabbit 2006  Pedicularis 229 70
Rabbit 2009  Pedicularis 7 7
Colony 2009  Pedicularis 33 9
Rabbit 1999  Collinsia 88 0
Rabbit 2006  Collinsia 323 1
Tamarack 2009  Collinsia 64 0
Tamarack 2010  Collinsia 30 0
Leek 2006  Collinsia 15 0
Leek 2009  Collinsia 83 0
Leek 2010  Collinsia 136 2

 Discussion  

 Potential for alteration of microhabitat as responses 
to climate warming 

 Populations and species may buff er climate warming by 
altering their use of resources or habitats. Species previously 
classifi ed as habitat specialists have colonized novel habitat 

types as they extended their ranges polewards with warm-
ing (Th omas et   al .  2001, Yang et   al. 2011, Pateman et   al. 
2012). Others have disappeared from the hottest microhabi-
tat patches, becoming restricted to  “ climate microrefugia ”  
around cooler microhabitats (Wilson et   al. 2007, McLaugh-
lin and Zavaleta 2012). Like these species,  Euphydryas editha  
occupies a diversity of habitats, most of which contain several 
potential host plants (Singer and Wee 2005, Mikheyev et   al. 
2013). Here, we have shown that some of these hosts could 
be used in alternate ways that would dramatically change the 
thermal experience of the insects. A clear example is the diver-
sity of egg placement that we observed on both  Castilleja  and  
Collinsia  (Table 3, Supplementary material Appendix 1 Fig. 
A2). Th e existence of diversity among populations in both 
egg placement and phenology suggests that  E. editha  living 
in warming habitats may have multiple options for climate 
responses besides the range shift documented by Parmesan 
(1996). Th ey may be able to counter eff ects of warming by 
remaining in situ and altering their phenology, their choice 
of host species, and/or their oviposition microsites (with or 
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  Table 6. Available space for eggs to be laid in cooler microsites on 
the same hosts that are currently used. The last column represents 
the mean and range of the distance from each egg clutch to the top 
of the plant on which it was laid.  

Site Host plant
Sample 

size

Mean egg 
height 
(mm)

Mean (range) 
plant top – egg 
height (mm)

San Diego  Plantago 6 3.17 20.0   (14 – 30)
Rabbit 

Meadow
 Pedicularis 10 7.60 66.1   (27 – 98)

Tamarack  Collinsia 14 47.2 36.93   (7 – 71)
Leek Springs  Collinsia 12 57.83 28.17   (12 – 44)
Dunderberg  Castilleja 3 2.17 56.16   (38 – 78)

  Table 5. Weights of newly-enclosed female  E. editha.   

Site
Sample 

size
Mean weight 

(mg)  �    95% CI

Rabbit Meadow 153 131    �    3.13
Gardisky Lake   (near 

Dunderberg)
9 92.1    �    3.24

Cardwell Hill 16 190    �    15.5
Morgan Hill 15 285    �    26.6

  Figure 6.     Elevation plotted against latitude of current study sites 
and sites near range limits. Positive association is signifi cant at 
p    �    0.003.  

without a host shift). Below, we discuss the extent to which 
the biology of  E. editha  generates such options and thereby 
promotes resilience to anthropogenic climate change.   

 Phenology and its consequences for  E. editha  

 Our study populations ’  peak fl ight and oviposition times 
occurred in any month from March to July (Table 1). Flight-
season-temp, the mean daily maximum in the month of 
peak fl ight, was not signifi cantly associated with either lati-
tude or altitude. Th is suggests that the phenological variation 
among populations resulted in similar fl ight season tempera-
tures across the range of conditions encompassed in our 
study. Some of this phenological variation was forced on the 
insects. Larvae at montane sites must wait until snowmelt to 
begin feeding, and sites 2000 m and higher are still under 
snow in March. Th ese sites were forced into a relatively late 
phenology. Likewise, populations feeding on ephemeral 
spring annual hosts are forced into early phenology when 
later hosts are not available. However, only two of our fi f-
teen study sites, Bircham Flat Road and Illinois River Road, 
lacked availability of  ‘ late hosts ’ , with the other 13 sites hav-
ing the possibility of later fl ight seasons (Table 2). 

 A simple analysis, including all sites, shows that higher 
July temperatures are associated both with the extent of 
phenological advance into early fl ight seasons and with the 
degree to which phenological advance mitigates exposure to 
high ambient temperatures. However, if we are to use these 
analyses to test the hypothesis that the insects have evolved 
early phenology in response to thermal stress at hot sites, 
we should exclude the Bircham Flat and Illinois River Road 
sites that are forced to early phenology by host availability 
and do not have later phenological options available. Once 
this is done, both trends, though still suggestive, fall short of 
statistical signifi cance.   

 Egg heights, eggspace temperatures, thermal 
tolerance and grazing 

 Singer and McBride (2010) observed egg height to be host-
associated. Insects in populations using  Pedicularis semi-
barbata  laid eggs at a mean height of around 4 mm, while 
those using  Collinsia torreyi  laid at a mean height of 50 mm, 
although both heights were available on both plant spe-
cies (Singer and McBride 2010). Here, by studying a larger 
sample of populations than Singer and McBride, distributed 
over a greater diversity of habitats, we observed that egg 
height was even more variable than in the prior study but less 
tied to host affi  liation. We documented striking diff erences 
in egg height among populations using very similar hosts 
(Table 3). For example, eggs laid at Deer Creek on  Castilleja 

miniata  (ssp.  elata ) were placed on the fl ower heads almost 
as high on the plants as was physically possible (mean height 
454 mm, Supplementary material Appendix 1 Fig. A2). 
In contrast, eggs laid on  C. miniata  at Gold Lake were tucked 
under leaves close the ground (mean height 9.88 mm, Sup-
plementary material Appendix 1 Fig. A2). We also observed 
variable egg heights among  Collinsia -feeding sites: eggs were 
laid high at three such sites and low at a fourth (Table 3). 

 We avoided working in unusually hot weather and 
recorded mean ambient temperatures below 25 ° C at all 
sites except Deer Creek. Nonetheless, at sites where the 
ground was mostly bare (i.e. all sites except Deer Creek and 
Cardwell), the soils reached temperatures above 60 ° C. Th ese 
high ground temperatures caused eggspace temperatures 
to increase strongly with decreasing egg height (Fig. 4, 
Table 3), with the result that low-laid eggs experienced tem-
peratures approaching 20 ° C above ambient. We made indi-
vidual observations of eggspace temperatures above 40 ° C at 
all four sites where eggs were laid low. In contrast, eggs laid 
high on  Castilleja  fl owers (at Deer Creek) averaged a few 
degrees cooler than the  ‘ ambient ’  measures, presumably due 
to transpirational cooling, which is known to play a role in 
climate buff ering of insect eggs. Potter et   al. (2009) found 
that transpiration by  Datura  leaves cooled eggs of the moth 
 Manduca sexta  by around 6 ° C, protecting them from the 
otherwise lethal ambient temperatures of 46 ° C. To appre-
ciate the dramatic eff ect of egg height, consider that mean 
eggspace temperature around eggs laid low in 20.6 ° C ambi-
ent temperature at Dunderberg (3171 m elevation) was 7 ° C 
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nologies to oviposit on earlier, cooler dates, with earlier entry 
into their heat-resistant diapause phase. Anecdotally, we 
observe that this should apply to all of our study sites except 
Dunderberg, where the butterfl ies closely resembled those 
at Gardisky.   

 Phenological shift options 
 In twelve of the fi fteen populations, larvae broke diapause 
as early in the year as it was possible for them to feed 
(Table 2). At these sites, any advance in phenology would 
likely happen at the expense of adult size and female fecun-
dity. At the remaining three sites, larvae did not break 
diapause as soon as food was available (Table 2); they waited 
and produced adults relatively late (Table 1). Th ese three 
sites had the potential for evolving earlier phenology with-
out reducing adult size and without a host shift. However, it 
is possible that temporal activity patterns of natural enemies 
currently exclude larvae from feeding on earlier dates and 
would oppose evolution of earlier phenology.   

 Egg height options 
 Table 6 shows measured available space above natural 
egg clutches at fi ve sites. Overall, we observed that eggs 
at seven of the 15 sites were laid as low as possible, and 
there was only one population (Deer Creek) where all eggs 
were laid almost as high above the ground as was pos-
sible on their hosts (Supplementary mareial Appendix 1 
Fig. A2). At all sites but Deer Creek, space existed to 
oviposit in cooler microsites without a host shift. 
However, at our Rabbit Meadow site the principal host, 
 Pedicularis , was clipped from the leaf-tips by grazers and 
eggs laid higher on the plants faced greater risk of inci-
dental predation. A photograph (Supplementary mate-
rial Appendix 1 Fig. A1) illustrates the drastic eff ect that 
this natural grazing would have on eggs laid close to the 
leaf tips.   

 Lack of biogeographic constraints 
 Th e only way in which the butterfl ies met biogeographic 
expectations was to advance phenology more at hotter sites 
(Fig. 1a – b) and even this relationship fell short of statisti-
cal signifi cance when analyzed without populations where 
 ‘ late hosts ’  were not available. Despite lacking statistical sig-
nifi cance, this trend was strong enough to quash any asso-
ciation between geographical location (latitude or altitude) 
and mean eggspace temperature. Also, we might expect the 
insects to choose cooler microsites when ovipositing in hot-
ter conditions but there was only a slight trend in this direc-
tion, driven by high egg clutches at the two hottest sites, 
Deer Creek and Pozo (Fig. 5). However, at the three next 
hottest sites (Piute, Gold Lake and Rabbit Meadow) eggs 
were laid close to the ground, so the expected trend fell well 
below signifi cance. 

 Th e butterfl ies failed to occupy high elevations at lower 
latitudes and lower elevations at high latitudes (Fig. 6). Th e 
most equatorial known site for  E. editha  was at sea level and 
the most poleward site was around 2200 m; this clearly runs 
counter to expectation for a thermally-constrained organism. 
However, we fi nd the statistically signifi cant positive corre-
lation between site latitude and elevation (Fig. 6) inconse-
quential. It results partly from lack of high elevation sites 

hotter than that of eggs laid high in 33.3 ° C ambient at Deer 
Creek (213 m elevation). 

 Observations of oviposition behavior in  E. editha  
(videos attached to McBride and Singer 2010) suggest that 
egg heights resulted from decisions made by ovipositing 
females either to lay eggs at the site of alighting, as in popu-
lations where  Collinsia torreyi  was used, or to drop down and 
seek oviposition sites close to the ground, as in populations 
where  Pedicularis semibarbata  was used. 

 Eggs in our thermal tolerance experiment all survived at 
45 ° C but were killed by an hour’s exposure to 48 ° C. Com-
paring these laboratory experiments with our fi eld observa-
tions, we infer that eggs must, at least occasionally, die from 
thermal stress in the fi eld, although we did not observe this. 

 We combined recordings of incidental predation on host 
plants across four separate years during the season when eggs 
were present. More than 40% of  P. semibarbata  plants were 
shortened by grazers, while fewer than 1% of  C. torreyi  were 
so aff ected (Table 4). Eggs laid low on  P. semibarbata  would 
have been protected against incidental predation by graz-
ers, while those on  C. torreyi  would have had no need of 
such protection. Prior work has shown that eggs laid high on 
 C. torreyi  benefi tted from higher food quality for the neonate 
larvae (McBride and Singer 2010), and low egg placement 
on  P. semibarbata  speeded both egg and larval development 
(McBride and Singer 2010). It is not surprising, then, that in 
the set of populations studied by Singer and McBride (2010) 
eggs were consistently laid higher on  C. torreyi  than on  
P. semibarbata.   

 Th e egg is not the only immobile life stage that may need 
protection from ground-level temperatures; while we have 
found diapausing larvae of  E. editha bayensis , the bay check-
erspot, under small rocks at ground level in central Califor-
nia, diapausers of the southernmost  E. editha  subspecies ,  the 
endangered Quino checkerspot, were found off  the ground, 
on shrubs that were not host plants of the butterfl y (Pratt 
and Emmel 2010). Th e species ’  survival in its southern dis-
tribution may require habitat structure that permits escape 
from ground level during their midsummer inactive period.   

 Resilience to climate change 

 Across all of our measures (size, phenology, egg height and 
host plant choice), we found considerable variation among 
populations. Th is existing variation gives nearly every popu-
lation in our study multiple options for adapting in situ to 
anthropogenic climate change.  

 Body size options 
 Mean weight of newly-eclosed females varied among sites 
by more than a factor of three (Table 5). When  E. editha  in 
the laboratory were fed the same hosts and kept at the same 
temperatures, they maintained size variation typical of their 
populations of origin (Singer et   al. 1995). Th erefore, we sus-
pect that at least some of the size variation is heritable and 
could evolve in response to changing conditions (Singer and 
Parmesan 2010). Th e smallest mean size of newly-eclosed 
females that we observed was 92 mg at Gardisky Lake 
(Table 5). If size is indeed free to evolve, then populations 
with mean size greater than 92 mg should have the poten-
tial to evolve smaller sizes and thereby advance their phe-
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 How can we reconcile known climate-sensitivity with 
our developing view of the species as a whole as climate-
change-resilient? Th e answer may lie in the mosaic nature 
of the insects ’  ecotypic variation that aff ects their experi-
ence of climate. Climate-sensitive populations adapted to 
ephemeral annuals exist interdigitated with populations 
using perennial hosts that are less sensitive to year-to-year 
climate fl uctuations (Singer and McBride 2012). Instead of 
the expected geographical and elevational trends in the way 
climate is experienced by individual populations, our study 
illustrates a geographic mosaic of microclimate and thermal 
stress produced by diverse phenology, diverse microhabitats, 
diverse resources, and diverse behaviors involved in resource 
utilization. Th e ecological and evolutionary sources of this 
mosaic imply that  E. editha  has many options for responding 
to climate warming, and should have higher resilience than 
expected of such a climate-sensitive species.                 
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(or lack of knowledge of them) in Mexico, partly from a bias 
towards higher elevations in our choice of mid-latitude sites 
for study and partly from the degradation by humans of low-
elevation sites in British Columbia. 

 Th e high elevations of the most poleward populations 
suggest that the poleward range limit is not climate-con-
strained. Across all latitudes, the highest elevations recorded 
for  E. editha  are around Yosemite Park and in northern Inyo 
County, California (Parmesan 1996, Wee 2004), represented 
in our study by the population at Dunderberg Peak at 3171 
m elevation. In this region, we observed the butterfl ies at ele-
vations as high as vegetation occurred, suggesting that habitat 
availability rather than climate set the elevational limit of the 
species. In sum, among the various possible combinations of 
elevation and latitude that might form range limits only one, 
the equatorial range boundary at low elevation, may be set 
by climate. We note that the range shift documented by Par-
mesan (1996) was a signifi cant northward and upward shift 
in the proportion of currently suitable  E. editha  habitats with 
extant populations, rather than a shift in range boundaries.    

 Conclusions 

 We provide two types of evidence suggesting that  E. editha  
has a considerable arsenal at its disposal to respond to warm-
ing climate. Th e fi rst class of evidence stems from direct 
observations of our study populations. Many of them appear 
to retain options for reducing thermal stress on eggs. Some 
have the option of shifting to an earlier date with cooler 
ambient temperature, either by earlier breaking of diapause 
and/or by reducing adult size. Except for Deer Creek, all 
populations could increase egg height without a host shift. 
However, at one site, Rabbit Meadow, raising egg height 
would increase vulnerability to grazers. 

 Th e second category of evidence for resilience derives 
from the weakness of expected biogeographical trends. 
Overall, the weak relationships between fl ight season tem-
perature and latitude/altitude, plus the failure of the insects 
to consistently choose the coolest microsites in the hottest 
climates (Fig. 5) suggest that options for in situ adaptation 
to warming climate exist. Th e more climate-constrained the 
insects become, the more we expect them to conform to 
these expected patterns. 

 Despite known climate sensitivity of  E. editha  and 
observed climate-caused population extinctions and range 
shifts, we expect that this species ’  potential for rapid evolu-
tion (Singer et   al. 1993) and ecotypic variation (Singer and 
McBride 2010) will enable it to persist across most of its range 
as climate warms. However, particular ecotypes may prove 
extremely vulnerable. A prime example is the federally endan-
gered bay checkerspot  Euphydryas editha bayensis . Although it 
is located near the center of the species ’  latitudinal range, the 
bay checkerspot operates close to the limits of its ecological 
tolerance (Singer 1972, Weiss et   al. 1988, McLaughlin et   al. 
2002, Singer and Parmesan 2010). It evolved to those limits 
by trading adult fecundity against off spring mortality (Singer 
and Parmesan 2010), resulting in phenological asynchrony 
with its ephemeral hosts and high larval mortality from host 
senescence; most populations are extinct, and those remain-
ing are sensitive to climatic fl uctuations (Weiss et   al. 1988, 
McLaughlin et   al. 2002; Hellmann 2002). 
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