527 research outputs found

    In Search of Adequate Protection for Choreographic Works: Legislative and Judicial Alternatives vs. The Custom of the Dance Community

    Get PDF
    One of the improvements in the 1976 Copyright Act was the specific recognition of choreographic works as copyrightable material. The Act\u27s focus on the protection of economic rights, however, fails to address the primary interest of the dance community in the preservation of moral rights in a work. The author examines the unique concerns of choreographers, and concludes that it is customary, and not legislative or judicial, law that continues to provide the best protection of choreographers\u27 artistic interests

    The Reason of the Common Law

    Get PDF
    Although the present meaning of reason has been reduced to discrete definitions, precise interpretations did not exist in medieval England. Rather, reason was defined by its role in the adjudicatory process. During the late medieval period, reason came to embody the very essence of the common law as courts recognized that it could be used to prevent procedural rules from infringing upon substantive rights. Relying upon Year Book cases and jurisprudential works, the author describes how the chameleon-like character of reason helped to shape the medieval English common law

    The Reason of the Common Law

    Get PDF
    Although the present meaning of reason has been reduced to discrete definitions, precise interpretations did not exist in medieval England. Rather, reason was defined by its role in the adjudicatory process. During the late medieval period, reason came to embody the very essence of the common law as courts recognized that it could be used to prevent procedural rules from infringing upon substantive rights. Relying upon Year Book cases and jurisprudential works, the author describes how the chameleon-like character of reason helped to shape the medieval English common law

    Differentiating Climatic And Successional Influences On Long-Term Development Of A Marsh

    Get PDF
    Comparison of long-term records of local wetland vegetation dynamics with regional, climate-forced terrestrial vegetation changes can be used to differentiate the rates and effects of autogenic successional processes and allogenic environmental change on wetland vegetation dynamics. We studied Holocene plant macrofossil and pollen sequences from Portage Marsh, a shallow, 18-ha marsh in northeastern Indiana. Between 10 000 and 5700 yr BP the basin was occupied by a shallow, open lake, while upland vegetation consisted of mesic forests of Pinus, Quercus, Ulmus, and Carya. At 5700 yr BP the open lake was replaced rapidly by a shallow marsh, while simultaneously Quercus savanna developed on the surrounding uplands. The marsh was characterized by periodic drawdowns, and the uplands by periodic fires. Species composition of the marsh underwent further changes between 3000 and 2000 yr BP. Upland pollen spectra at Portage Marsh and other sites in the region shifted towards more mesic vegetation during that period. The consistency and temporal correspondence between the changes in upland vegetation and marsh vegetation indicate that the major vegetational changes in the marsh during the Holocene resulted from hydrologic changes forced by regional climate change. Progressive shallowing of the basin by autogenic accumulation of organic sediment constrained vegetational responses to climate change but did not serve as the direct mechanism of change

    Near-Earth plasma sheet boundary dynamics during substorm dipolarization.

    Get PDF
    We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.Graphical AbstractMultispacecraft observations of dipolarization (left panel). Magnetic field component normal to the current sheet (BZ) observed in the night side magnetosphere are plotted from post-midnight to premidnight region: a GOES 13, b Van Allen Probe-A, c GOES 14, d GOES 15, e MMS3, g Geotail, h Cluster 1, together with f a combined product of energy spectra of electrons from MMS1 and MMS3 and i auroral electrojet indices. Spacecraft location in the GSM X-Y plane (upper right panel). Colorcoded By disturbances around the reconnection jets from the MHD simulation of the reconnection by Birn and Hesse (1996) (lower right panel). MMS and GOES 14-15 observed disturbances similar to those at the location indicated by arrows

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure
    corecore