117 research outputs found

    Granular dynamics in compaction and stress relaxation

    Full text link
    Elastic and dissipative properties of granular assemblies under uniaxial compression are studied both experimentally and by numerical simulations. Following a novel compaction procedure at varying oscillatory pressures, the stress response to a step-strain reveals an exponential relaxation followed by a slow logarithmic decay. Simulations indicate that the latter arises from the coupling between damping and collective grain motion predominantly through sliding. We characterize an analogous "glass transition" for packed grains, below which the system shows aging in time-dependent sliding correlation functions.Comment: 5 pages, 5 figure

    Hydrogen slush density reference system

    Get PDF
    A hydrogen slush density reference system was designed for calibration of field-type instruments and/or transfer standards. The device is based on the buoyancy principle of Archimedes. The solids are weighed in a low-mass container so arranged that solids and container are buoyed by triple-point liquid hydrogen during the weighing process. Several types of hydrogen slush density transducers were developed and tested for possible use as transfer standards. The most successful transducers found were those which depend on change in dielectric constant, after which the Clausius-Mossotti function is used to relate dielectric constant and density

    Fish Species of Greatest Conservation Need in Wadeable Iowa Streams: Current Status and Effectiveness of Aquatic Gap Program Distribution Models

    Get PDF
    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species– habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of IowaAquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lamprey Lampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen’s kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darter Etheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose dace Rhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the distributional trends and habitat associations of fish SGCN

    High-throughput mutation, selection, and phenotype screening of mutant methanogenic archaea

    Get PDF
    Bacterial and archaeal genomes can contain 30% or more hypothetical genes with no predicted function. Phylogenetically deep-branching microbes, such as methane-producing archaea (methanogens), contain up to 50% genes with unknown function. In order to formulate hypotheses about the function of hypothetical gene functions in the strict anaerobe, Methanosarcina acetivorans, we have developed high-throughput anaerobic techniques to UV mutagenize, screen, and select for mutant strains in 96-well plates. Using these approaches we have isolated 10 mutant strains that exhibit a variety of physiological changes including increased or decreased growth rate relative to the parent strain when cells use methanol and/or acetate as carbon and energy sources. This method provides an avenue for the first step in identifying new gene functions: associating a genetic mutation with a reproducible phenotype. Mutations in bona fide methanogenesis genes such as corrinoid methyltransferases and proton-translocating F420H2:methanophenazine oxidoreductase (Fpo) were also generated, opening the door to in vivo functional complementation experiments. Irradiation-based mutagenesis such as from ultraviolet (UV) light, combined with modern genome sequencing, is a useful procedure to discern systems- level gene function in prokaryote taxa that can be axenically cultured but which may be resistant to chemical mutagens. Includes supplementary tables & figure

    Evaluation of Ralgro® on pasture and subsequent feedlot performance and carcass merit of mexican crossbred steers

    Get PDF
    A pasture/feedlot field study was conducted to evaluate the effects of a single Ralgro® implant during the stocker phase on steer grazing performance and subsequent feedlot performance and carcass merit. A total of 2,764 steers of Mexican origin averaging 449 lb were assembled in Texas and shipped to Kansas, where they grazed on three intensively-early-stocked Flint Hills pastures. At initial processing, the steers were individually weighed and randomly assigned to either a non-implanted control group or a Ralgro implant group. Ralgro steers gained more (23 lb; P<0.01) than controls during the 82- to 93-day grazing phase. Following the grazing phase, all steers were shipped to a commercial feedlot in southwestern Kansas where steers from each pasture were individually weighed and given a single Component E-S® implant. Immediately after processing, steers from each pasture were sorted into either a light- or heavy-weight pen, regardless of pasture implant treatment, resulting in six feedlot pens. Days on feed ranged from 127 to 197. Control steers gained faster (P<0.01) during the feedlot phase; however, Ralgro steers had higher cumulative weight gains across the combined pasture and feedlot phases (P<0.01) and averaged three fewer days on feed (P<0.05). There were no significant differences for marbling, fat thickness, ribeye area, KPH fat, or yield grade. Ralgro steers had lower (P<0.05) quality grades because of a higher incidence (P<0.001) of steers with B and C carcass maturities

    Habitat Associations of Fish Species of Greatest Conservation Need at Multiple Spatial Scales in Wadeable Iowa Streams

    Get PDF
    Fish and habitat data were collected from 84 wadeable stream reaches in the Mississippi River drainage of Iowa to predict the occurrences of seven fish species of greatest conservation need and to identify the relative importance of habitat variables measured at small (e.g., depth, velocity, and substrate) and large (e.g., stream order, elevation, and gradient) scales in terms of their influence on species occurrences. Multiple logistic regression analysis was used to predict fish species occurrences, starting with all possible combinations of variables (5 large-scale variables, 13 small-scale variables, and all 18 variables) but limiting the final models to a maximum of five variables. Akaike’s information criterion was used to rank candidate models, weight model parameters, and calculate model-averaged predictions. On average, the correct classification rate (CCR = 80%) and Cohen’s kappa (κ = 0.59) were greatest for multiple-scale models (i.e., those including both large-scale and small-scale variables), intermediate for small-scale models (CCR = 75%; κ = 0.49), and lowest for large-scale models (CCR = 73%; κ = 0.44). The occurrence of each species was associated with a unique combination of large-scale and small-scale variables. Our results support the necessity of understanding factors that constrain the distribution of fishes across spatial scales to ensure that management decisions and actions occur at the appropriate scale
    • …
    corecore