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ABSTRACT

A hydrogen slush density reference system was

designed for calibration of field-type instruments and/or

transfer standards. The device is based on the buoyancy

principle of Archimedes. The solids are weighed in a low-

mass container so arranged that solids and container are

buoyed by triple-point liquid hydrogen during the weighing

process.

Several types of hydrogen slush density transducers

were developed and tested for possible use as transfer stan-

dards. The most successful transducers found were those

which depend on change in dielectric constant, after which

the Clausius-Mossotti function is used to relate dielectric

constant and density.

Key words: Capacitance; density reference system; density

transducers; density transfer standard; dielectric constant;

hydrogen slush; microwave; nuclear radiation attenuation.
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HYDROGEN SLUSH DENSITY REFERENCE SYSTEM*

D. H. Weitzel, L. T. Lowe, D. A. Ellerbruch,

J. E. Cruz, and C. F, Sindt

1o Introduction

The purpose of the hydrogen slush density reference system is

for calibration of field type instruments and/or transfer standards. The

transfer standard is an instrument which can be used in or on a storage

tank or pipeline containing slush hydrogen, but which will not be a fixed

or permanent part of the facility instrumentation. The transfer standard

thus' provides a method for traceability of facility instrumentation to the

primary density reference system,

2. Design Considerations

2. 1 General

For a density reference system, it is advisable to work directly

with mass and volume. Several methods for hydrogen slush weighing

were considered before a system was designed to take advantage of the al-

ready well known density of triple-point liquid hydrogen. Triple-point

liquid will always be one component of the solid-liquid mixture known as

hydrogen slush. The triple-point liquid density is given by Roder, et all,]

as 77, 017 kg m '
3 , with an uncertainty of +0. 1 percent, and the triple-

point solid density is given by Dwyer, et al. ,[] as 86. 59 kg m - 3 , with an

uncertainty of +0. 3 percent. A hydrostatic weighing method was accord-

ingly conceived which would take advantage of the more accurate of these

two, i. e. , the triple-point liquid density,

*This work was carried out at the National Bureau of Standards under
NASA-MSFC Contract H-2159A.



2. 2 A Method for Slush Density Measurement

When considering density determination for slush hydrogen, which

is neither solid rnor liquid but a variable mixture of these two phases, it

might seem unlikely that the advantages of Archimedes' Principle could

be applied. This is not the case, however, as will be shown.

Consider a light weight container suspended from a weighing

system as shown in figure 1. The container is suspended inside- a dewar

which is closed by a gas-tight top plate. The mass transducer is in a

separate housing above the top plate, but communicates with the dewar

atmosphere through a clearance hole provided for the suspension member.

The first step is to zero and calibrate the weighing system; this is done

with calibration weights in the column above the top plate.

The empty container is weighed, then filled with triple-point

liquid hydrogen from a separate cryostat as represented in figure 2.

The mass of the full container is noted, the empty mass is subtracted,

and the net mass of the liquid contained is recorded as Mt.

Figure 3 shows the cryostat completely full of triple-point liquid.

The mass of the container is again noted. This buoyed mass of the

"empty" container is a constant of the apparatus, and a method is pro-

vided for zeroing the weighing system with this exact mass suspended

from it.

Slush is now introduced, as shown in figure 4. This is done by

lifting the container up against a plate which has screened holes in it,

and then transferring slush from the same cryostat which previously pro-

vided triple-point liquid. The solids are retained while the excess liquid

is transferred back to the slush generator. When a convenient solid

2



Figure 1. Empty Weigh-Can in Cryostat.
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Weigh-Can Filled with Triple-Point Liquid Hydrogen.

4

Figure 2.
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Figure 3. Cryostat and Weigh-Can Filled with Triple-Point
Liquid Hydrogen.
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Figure 4. Hydrogen Slush in Weigh-Can, Cryostat Filled with
Triple-Point Liquid.
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fraction has been added to the liquid, the final weighing is made. After

subtracting the buoyed mass of the "empty" container, the buoyed mass

of the solid hydrogen is known. This is designated as Mb, the variable

parameter which will yield the desired density P for each sample of slush.

The functional relation between the slush density p, the triple-

point liquid density pf, and the masses Mf and Mb can be easily de-

rived. The mass of the slush in the container is equal to pV, where V

is the volume. The mass of the liquid before any solid was present was

P V. The difference between these two masses is exactly M b , the buoyed

mass of the solid hydrogen in the container. Thus

pV - p V = M b

Since the volume V is equal to M /p,, the following relationships can be

written:

Mb Mb% z
P- + P,. = M + P, orV M~e PG 

Mb (
P= P(1)

where

p = slush density

Pt = triple-point liquid density

Mb = buoyed mass of solid

M = mass of triple-point liquid which just fills the

container.

Equation (1) separates p into two factors, one of which (po) is a

measured physical constant taken from the literature. Its use introduces

7



a constant systematic error, whereas the other factor (Mb/M, + 1) will

introduce both systematic and random errors.

Thus, the experimental measurements required to obtain the slush

density o are Mb and Mr, both of which are determined by direct weigh-

ing. The magnitude of M, will be about 2000 g for an inner container

having a diameter of 28 cm and depth of 37 cm. The magnitude of Mb

will vary from a few grams for a low solid fraction to about 137 g for

60 percent solid fraction.

2. 3 Error Analysis

It is instructive at this point to make some reasonable assumptions

about the weighing system and calculate the accuracy with which an un-

known slush density can be determined. If calibration masses and a

suitable method for their application and removal during the experiment

are provided, it should be quite easy to determine both M b and MC to

within ±0. 5 percent of their true values. In order to make a better example,

however, assume that the inaccuracy in the weighing can be as much as

+2. 0 perc ent.

A general expression for compounding of errors in y, where

Y = f(xj, x ....... xn) is

2 n 2 2
(dy> ) dx3( ) (2)

if the components of error dx. are independently distributed and sym-

metrical with respect to positive and negative values[3]metrical with respect to positive and negative values. These are rea-

sonable assumptions for the situation represented by equation (1).

Accordingly,

8



2 = ( + 2 ' 2 2
/1 aP \ dp) PIP

(dP) O)(d 

Typical values for the variables are

Mb = :117 g (the value for a solid fraction of 0. 50)

M = 2000 g
MC,

P = 77. 017-kg m -
3 .

From these values and the assumed fractional errors in weighing, to-

gether with the ±0. 1 percent uncertainty in pi, the uncertainties are:

dMb
--= 0. 02, or dMb = 2. 34 g

Mb

dM
M = °0. 02, or dM = 4 0. 0 g
M

R
.

dp,
P 0. 001, or dPA = 0. 077 kg m -

3

P

The partial derivatives are:

+ 1)= 1. 05856

p
bMb M- . 03854
6b b M

R

b _ = t b = -0. 002256.
2M 

From equation (2),

(dP) = 0. 00665 + 0. 00814 + 0. 00818, or

9



(d o) 0. 0230, from which

dp = +0. 15 kg m- 3 .

Note that the three terms which add together to get (do)2 are

approximately equal in magnitude even though the uncertainty in the triple-

point liquid density (which gives the first term) is +0. 1 percent, whereas

the uncertainty in each of the two weighings is ±2. 0 percent, or 20 times

as great. This comes about because of the functional relationship ex-

pressed in equation (1).. By making use of Archimedes' Principle it is

possible to capitalize heavily on the high degree of accuracy with which

the triple-point liquid density P0 is known.

To carry this example through, equation (1) is used to find the

mean p for a solid fraction of 0. 50. Thus

P= It( -+l) 77. 017 (2000 + 1)

= 81.35 kgm- 3 .

The fractional error in p is

dp 0. 15
-p + 1.35 or +0. 18%.

From these considerations it may be concluded that the density of

hydrogen slush can be determined at 0. 50 solid fraction with an uncer-

tainty of less than +0. 2 percent if a weighing system which is accurate

to ±2. 0 percent is used. Figure 5 shows how the uncertainty in slush

density o will vary for the assumed system as the density itself is varied.

A scale of mass fraction solid (sometimes called "quality") is shown for

comparison with density. The uncertainty is shown in kg m - 3 as well as

percent of measured mean density.

10
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2. 4 Slush Quality Error

It is often convenient to use the concept of "quality" by which is

meant the mass fraction of solid in the liquid -solid mixture. Conver-

sion from slush density to slush quality is, of course, a purely mathe-

matical manipulation and cannot introduce any new experimental error

which is traceable to the density reference system. The conversion

from density to quality does, however, introduce a new physical constant

along with the uncertainty in our present knowledge of that constant. The

constant is p
s
, the triple-point density of solid hydrogen, which is given in

reference [2] as 86. 59 kg m -
3 , with an uncertainty of +0. 3 percent.

If we now examine the equation which converts density to mass

fraction of solid (quality) we can see how much additional uncertainty is

introduced into our statement of results. The expression for mass

fraction of solid in terms of the slush, liquid, and solid densities, is

p (P - P )
PF (Ps -) (3)
S(P - P( ·

For p we substitute from equation (1), which gives

sMb
F = (Mb + M)

s
- )'(4)

(Mb + Mt,) (Ps Pt)

This expresses F in terms of the experimental variables Mb and M

and the systematic parameters pt and o . The partial derivatives are

'aF PsMb

aMb (os· P,) (Mb + Mt)

12



-PsMb

e_ (pCPs P Mb +M

. . .M b +
F (M b +M -P )

Qs (Mb + M) (PD- p)

Values for the experimental variables and systematic parameters togeth-

er with their uncertainties are:

Mb

M

P
s

= 117. 01 +0. 58 g (for 0. 500 mass fraction)

= 1998 +10 g

= 77° 017 ±0. 077 kg m - 3

= 86. 59 +0. 26 kg m-3;

If we make these substitutions and square

designating units):

the results, we have (without

2
3F ' = 1.,63 x 10-

\('- ) 1=

a(-RMk 5. 57 x 10

(aF \= O. 271

a- =F 0. 215.
s

13



Also we have

(dMb)2 = (0. 58)2 = 0. 342

(dM )2 = (10)2 100

(d p) 2 (0. 077)2 = 5. 93 x 10-3

(dp )2 = (0. 26)2 = 6. 76 X 10-2.
s

The uncertainty in F can now be approximated, as was done for

p, by use of equation (2). Thus, when F = 0. 500, for which the value of

M
b

is 117. 01 +0. 58 g/,t, we have

2 2 2 2 2 2 2
(dF) (d + aM (dM + p

= (5. 57 x 10- 6 ) + (5. 57 x 10-6 ) + (1.61 x 10-3)+ (1,.45 x 10-
2 )

z 2

-6 -31+ (1. 456 -3 -2

= 1.61 x 10

dF = ±0.013.

The fractional error in F is

dF O. 013
0. 5-01= +0. 026 or +2. 6%.

F 0. 50

Thus, the uncertainty in the mass fraction F is about 24 times as great

as the uncertainty in the slush density p when both are expressed as

fractional errors at 0. 500 solid fraction. This is purely a consequence

of introducing the relatively uncertain physical constant p into our ex-

pression for slush density. As our knowledge of ps improves, the state-

ment of solid mass fraction (quality) can be given with correspondingly

less uncertainty.

14



2. 5 Error Due to Heat Leak

One more source of experimental error should be considered

before the analysis is complete. This has to do with heat leak into the

inner container. Any such heat influx will continuously change the slush

density by melting some of the solid. Thus, the density p becomes a

function of time, and it is necessary to determine this time dependence.

A preliminary task is to analyze the accuracy with which this can be done.

Since there will always be some elapse of time between a density deter-

mination and a readout from a transfer standard which is in place and

being calibrated, it is apparent that the time dependence of p must be

known with a high degree of accuracy.

In order to define the functional relationship between p and

elapsed time t, note that in equation (1),

Mb

P= Pt (M- + 1),

it will be Mb which varies with time as heat leaks into the inner con-

tainer. Therefore

dp Pe dMb
dt M dt

It is the solid mass M, however, rather than the buoyed mass Mb,
S '

which varies directly with heat influx, so write

M P
Mb = M -pV = Mv -p s - M (1 -

s Cs s O
s s

15



Then

dt (1 - dt P -)H dt
S s

where

H is heat of fusion and

dQ
is heat influx.

dt

This substitution gives

dp _Pt (1 t) dQ
dt M H P dt

This is an exact expression showing that the time Variation of slush

density is directly proportional to heat leak into the inner container. If

the system is at steady state, all terms on the right side of the equation

are constants, although they all have uncertainties associated with them.

The values and uncertainties are known for all of the constants except

dQ/dt, for which the symbol W is used. Thus

dp = - Adt (6)

where

W0 P'
AMHA M H

* t s

and the negative sign is introduced to show that density decreases with

time. Integration of (6) from t 0 to t 1 gives

Pi- P = -A(t - t o )

16



Note that (tl - to) is a fixed time interval, which is designated T 1 . Then

p
- P 1A0 = _ t 1 -- )

TA MzH pT1

from which

M sH(p - 0 )

T1 t ( s -P P)

Since P1 and p0 are not independent variables, use equation (1) from

which

P

o M
e

(Mb 1 - Mb 0)'

Then

- H(Mbl Mb0)
-W (7)

T 1 (Pr -p 7)

Equation (7) gives W in terms of independent experimental variables

(Mbl, MbO, and T1 ) and systematic parameters (p, p, and H). Now

express the constant A in these terms, giving

dp P. (Mbl - Mb0)
dt -A (8)

Equation (8) gives the variation of slush density with time, based on a

preliminary experiment performed during the time interval T 1 . Mb0

and Mbl are load cell readings taken at the beginning and end, respectively,

of the time interval T1 .

17



The expression for a final slush density p, which is determined

by obtaining an initial density pO and correcting it for the solid melted

during an elapsed time interval T2, can now be written as

·

P= pO+t d- dt

0=
o dt

.t(Mbl Mbo)

.0D + TM (t - t)

TZ P(Mbl - Mbo)

=0+ T: .TM (9)

Here T 1 , Mbl, and Mb0 refer to the preliminary experiment which gave

equation .(8). T 2 and p0 refer to any subsequent slush density deter-

mination. Since o0 is not the independent variable, however, refer

once more to equation (1) and write

/.Mb
PO Pt(M + 1)

which can be substituted into equation (9). This gives

P T
t, + M +T 2 '(10)

M [(Mb IMt.T (Mbl b- )

where M b is the load cell reading taken at the beginning of the time

interval T 2 .

Equation (10) is the final working equation for the slush density

reference system. It shows all of the variables and systematic param-

eters which enter into a density determination. To be complete, then,

18



we should perform a final error analysis of this equation, which has

been done in Appendix A. The result shows that the heat leak correction

can be incorporated into the slush density determination without addition

of any significant new uncertainty.

3. Design Details

Appendix B contains detailed shop and assembly drawings of the

weighing cryostat and slush generator in their final configurations. The

system was designed and built essentially as described in section 2. 2.

3. 1 Weighing System

A light-weight (850 g) aluminum weigh-can having a volume of

23. 2 Z (see Appendix B, figure 2B) is suspended from a load cell which

is in a separate housing above the top plate of the weighing cryostat.

Between the top plate and the load cell is a cylinder, with windows (see

figure 3B) in which are suspended a series of calibration masses. The

weigh-can may be lifted from the load cell suspension at any time, and

one or more of the calibration masses can be substituted.

The method of weigh-can suspension and counterbalance is shown

in figure 6. A flexure beam attached to the lower side of the top plate

makes it possible to remove almost all of the empty (submerged) weigh-

can mass from the load cell. This provides maximum sensitivity for

determination of Mb, the buoyed mass of the solids in the weigh-can.

A gum rubber damper at the top of the suspension was found to be helpful

in avoiding load transducer oscillations. The gum rubber section also

prevents overstraining the suspension when the weigh-can is locked

against its stationary cover after a weighing has been completed.

19



Figure 6.
20

Weigh-Can Suspension System.
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The top plate and calibration-weight column were designed to

accommodate any load cell or force transducer which could be mounted

on the framework provided. Early in the program Mr. Harlan Harman,

Chief of the Pressure and Thrust Section in the Instrument and De-

velopment Branch of the MSFC kindly provided us with several

force-balance units which had been successfully used as differential

pressure transmitters. It was suggested that we could attach the top of

the weigh-can and calibration-weight suspension system to the midpoint

of one bellows of the force-balance differential pressure trans-

mitter, and use it as a sensitive weighing device without any further

modification. This proved to be a very satisfactory method for determin-

ation of M. and M
b . The transmitter is an electronic forcetbalance system,

in which the DC current required to maintain a null is measured to indi-

cate the force (of gravity, in our application). The unit used on the density

reference system has a sensitivity of about 0. 05 mA per gram weight,

which can be converted to voltage for readout and recording by placing

a stable resistor in series with the force motor. A 500 n resistor was

used, giving a sensitivity of 25 mV/g. Overall short-term stability was

+0. 5 g or better when weighing loads on the order of 100 g.

3. 2 Stirring Method

After a determination of average slush density in the weigh-can

has been made, it is of no value unless it can be accurately correlated

with the reading of another instrument, i. e. , it must be correlated with

a reading or series of readings from the transfer standard which is

being calibrated. The transfer standard transducer will usually be located

inside the weigh-can volume; its weight will be supported by the fixed

plate which forms the weigh-can cover between weighings. When the can

21



is lowered for weighing it no longer contacts the cover, so it and attach-

ments to it are not weighed. The important point, however, is that the

transfer standard transducer-must sense the average density of the weigh-

can contents. This can be accomplished only to the extent that the slush

is kept homogeneous while density transducer readings are being taken.

An effective stirring arrangement is accordingly of paramount importance

to usefulness of the density reference system.

An important restraint on design of the stirring method was the

fact that'any blades or surfaces wide enough to effectively move the solids

would also support a significant amount of solids when the stirring was

stopped for a weighing. If the blades were attached to the "outside world",

a new uncertainty in M
b

would be introduced. To circumvent this problem,

the magnetic method illustrated in figure 7 was designed. A low-mass

rotor inside the weigh-can carries eight slender bar magnets which link

flux with eight large alhi1co bar magnets attached to an iron wheel which

surrounds the cryostat. The various dimensions and materials are as

shown in figure 7.

A variable-speed air motor and a friction drive arrangement are

used to turn the large magnet wheel. Strength of flux linkage was found

to be adequate for all conditions except when starting to stir a full load

of well-settled heavy slush.

The magnet wheel and air motor assembly are supported on an

aluminum platform which can be lowered by means of cables into a pit

beneath the cryostat. This arrangement allows the magnetic linkage to

be removed for accurate weighing of the slush. The same aluminum

platform supports the cryostat shell (dewar) and lowers it into the pit,

along with the magnet wheel, when access to the interior of the cryostat

is required.
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-ALUMINUM WEIGH-CAN

IRON DRIVE WHEEL
I" x I-" CROSS SECTION

I" x I " x 3" ALNICO MAGNETS \
ON DRIVE WHEEL

MAGNETS ON ROTOR

FIXED PLASTIC COVER-

NON-MAGNETIC STAINLESS
STEEL DEWAR, EACUATED
ALUMINIZED MYLAR
MULTI-LAYER INSULATION

ELEVATOR FOR DER LEEVE
AND/OR MAGNET WHEEL BEARINGBEARING

Figure 7. Magnetic Stirring Method.
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A second restraint on the stirring method was the requirement

that as much as possible of the weigh-can interior be kept open for

installation of density-sensing devices. This led to the rotating plastic

spiral which is shown in figure 8. The combined stirring and elevating

action of the four-bladed plastic rotor and four-turn spiral provides a

very effective stirring action. Homogeneity of the stirred slush can be

tested by observing the readout value of any stable density transducer

while changing the speed of the stirring rotor. If there is no noticeable

change in density readout, it can be assumed that the liquid-solid mix-

ture is homogeneous over the chosen range of stirring speeds.

3. 3 System Operation

Auxiliary systems required to provide the hydrogen slush in the

weighing cryostat include the slush generator, liquid supply vessel,

vacuum-jacketed transfer lines, pumping capability for the "freeze-thaw"
[41method of slush production , and hydrogen and helium gas supplies for

pressurization, purging, and transfer operations.

Figure 9 is a photograph of the control panel board, which in-

corporates a schematic diagram of the system. From left to right are

represented the vacuum pump, water-warmed heat exchanger, slush

generator, and weighing cryostat. Figure 10 is a general view of the

cryostat assembly as seen from the left end of the control panel during

a run. In the right-hand side of the dewar support framework is the

slush generator, which is connected with a valved and vacuum-jacketed

transfer line to the 175-liter supply dewar at the far right of the picture.

In the foreground is a 50-liter liquid nitrogen dewar for filling the gener-

ator radiation shield. The weighing cryostat is in the left-hand portion

of the framework and connects to the generator with a second vacuum-

jacketed transfer line, which can be seen above the top plates. The
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calibration-weight column and force-balance unit are above the

cryostat; the magnet drive wheel is out of sight in the pit below the cryo-

stat. Figure 11 shows the weighing cryostat open, as it might appear

between runs, with the weigh-can exposed and ready to be removed from

its suspension.

The general operation procedure is as follows:

(1) Purge and pump cycles for cleanup of system.

(2) Fill generator radiation shield with liquid nitrogen.

(3) Connect 175-liter liquid hydrogen supply dewar to generator.

(4) Fill generator with LH
2

and simultaneously cool weighing

c ryo stat.

(5) With generator full and some liquid in weigh-can, bring

both vessels to triple-point pressure.

(6) Fill weigh-can with triple-point liquid and weigh. (This

gives M, one of the system constants, and does not need to be repeated

for each run. )

(7) Transfer more liquid from generator, overflowing the weigh-

can, and fill dewar. Maintain liquid at triple point with throttling valves

and manostat.

(8) Adjust force-balance unit to zero reading.

(9) Generate slush, and transfer to weigh-can. Transfer sur-

plus liquid back to generator and repeat until desired solid fraction

resides in weigh-can. (Be sure that weigh-can is in closed position for

this operation. )

(10) Stir and read density as shown by transducer under test.

Log on magnetic tape.

(11) Lower the magnetic drive wheel a foot or more below the

cryostat.
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(12) Lower the weigh-can onto the force-balance suspension

and observe readout on digital voltmeter and parallel-connected chart

recorder. Log on magnetic tape. Alternate weigh-can with calibration

weights until maximum accuracy is obtained.

(13) To make the heat leak correction, observe the time vs.

weight drift and record data required for extrapolation back to the density

transducer readout time.

(14) Repeat steps (9) through (13) as necessary.

4. Density Transducer Tests

Of the many measurable effects which are known to vary with

density, five were chosen for study as hydrogen slush density transducers

and possible development as a slush density transfer standard. The five

methods were:

1. Attenuation of beta radiation,

2. Attenuation of gamma radiation,

3. Dielectric change in a fixed capacitor,

4. Microwave transmission characteristics, and

5. Velocity of sound.

Methods 3 and 4 are based on changes in relative dielectric constant and

were found to be the best candidates.

4. 1 Beta-Ray Attenuation

If a source of beta radiation is placed a suitable distance from a

detector in liquid or slush hydrogen, the count-rate of beta particles

reaching the detector is an accurate indicator of the density of the fluid.

A system based on this principle was built by a private company under

NASA contract and was extensively studied in the density reference

system.
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The beta-ray attenuation system uses sealed sources containing

strontium-90 and encapsulated "surface barrier" radiation detectors.

Each detector contains a 50-mm 2 active area, 500 microns thick, housed

in a stainless steel capsule with a 0. 002-inch-thick stainless steel window.

The source housing contains a sealed 15 millicurie strontium-90 beta

source. For additional safety, the source housing is fabricated with a

second stainless steel window 0. 001-inch thick. Source-to-detector

spacing is made variable by means of small rods sliding through holes in

the detector housing. See figure 12.

Beta particles from the source are absorbed by the detector,

thereby producing minute electrical pulses. These are fed through a

preamplifier to a linear amplifier which shapes and further amplifies

the pulses, after which they go to a discriminator where those below a

given energy threshhold are blocked out. The discriminated pulses can

then be counted directly, or they can be converted to a DC signal pro-

portional to the pulse rate. The method is diagramed in figure 13.

The source and detector assembly shown in figure 12 has windows

spaced 4 cm apart. A 1/4-inch stainless steel tube supports this "probe",

provides means for evacuation and helium back-fill of the detector housing,

and carries the signal lead. The source capsule is "permanently" sealed,

with no provision for evacuation or back filling. This was a safety judge-

ment, but is presently subject to some question.

Parameters investigated in the density reference system were

source-to-detector spacing, discrimination level, reliability, and both

long and short term accuracy.

Since hydrogen slush is normally a non-homogeneous mixture,

an ever present problem for any density transducer is representative
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Figure 13. Schematic of Beta-Ray Attenuation System.



sampling. For the beta-ray attenuation system, this requires adequate

separation between source and detector windows, but if spacing is too

great there will not be a sufficiently high count for fast response or good

statistics. After a considerable amount of experimentation it was deter-

mined that a 4-cm spacing and an energy discrimination level which gave

approximately 3 x 10 4 counts per second at triple-point liquid hydrogen

density was a good set of conditions for work in the density reference

system.

Data were first taken with a strip-chart recorder connected to

the analog output. provided by the equipment, but this was soon replaced

by a counter-timer with a magnetic tape printer, so-the data reduction

could be done by computer. The computer program produced means,

slopes, and standard deviations, as well as machine-made graphs of

density vs. count-rate. The latter relationship was found to be linear

within the limits of experimental error. On a few plots a slight change

in the slope at triple point was found, i. e. , a small difference in Ac/Ap

when going from the liquid into the slush region, but these were subse-

quently attributed to imperfect mixing of the slush. The slope, which

represents sensitivity of the method, averaged about 5 x 103 counts s - l

per kg m
-

3 density change.

A series of runs with two of the probes in the density reference

system covered a period of six months and involved approximately 10

complete cooldown/warmup cycles. Performance -was relatively stable

over this period. Data from the last four of these runs, representing

more than 1000 stable count-rate vs. density observations, were care-

fully analyzed. It was concluded that the equipment was capable of

measuring hydrogen liquid or slush density with an uncertainty of no

more than one percent over the range of 71 to 81 kg m3., i. e., from
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normal boiling liquid to 0. 45 solid fraction, with no indication of loss of

accuracy at the extremes of this range. The uncertainty is based on a

statistical scatter of the count rates within a +2 a error band, i. e. , 95

percent confidence, and also includes the 0. 2 percent uncertainty contri-

buted by the density reference system.

Subsequent experience with these and the additional three detec-

tors provided did, however,, turn up some serious long-range stability

problems. All of the detectors became noisy over a period of less than

a year of service, and two of the five yielded very little satisfactory

data. The two detectors which were extensively tested in the density

reference system were later installed in a one-m3 vessel used for solid

fraction up-grading. One detector performed well over a period of

several weeks; the other exhibited an erratic base count-rate and gave

very little useful data in the new installation. Finally, the source housing

on one of the probes suffered a ruptured window. The inner seal remained

intact, so no contamination resulted, but the incident casts doubt on the

method of source packaging.

After completion of the program all of the detectors were returned

to the manufactuer for examination and reconditioning. In addition to

detector breakdown, complexity of the associated electronics is a dis-

advantage of the beta-attenuation system. For point density sensing,

however, it is a workable method, and could be used as a transfer stan-

dard for providing traceability to a density reference system.

4. 2 Gamma Ray Attenuation

Our experience with gamma ray attenuation for liquid and slush

hydrogen density measurement has been documented in other publica-

tions.[5 61 Two densitometers of this type have been used at NBS. The

densitometers used cesium 137 sealed sources, one 4 curies, the other
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17 curies, and ionization chambers as detectors. Sources and detectors

were mounted externally on opposite sides of the storage vessel; the beam

penetrated the walls of the vessel as well as the contained hydrogen. For

both vessels the beam traversed 0. 76 m of hydrogen liquid or slush, and

a little more than half of the attenuation took place in the hydrogen.

It was determined that the response (ionization current) was

accurately linear with density, so frequent checks on calibration of the

instruments could be made by using vapor pressure of well-stirred liquid

to determine a range of liquid densities from normal boiling to triple

point, then extrapolating this line into the slush region in order to read

out slush densities. Sensitivity figures depend on the dropping resistance

and amplifier used to convert the ionization current to a measurable

millivolt signal. Typical values were 0. 7 mV per kg m- 3 change, in

hydrogen slush density.

The only real problem experienced with the gamma-ray dens itom-

eters was drift, which was apparently related to small temperature

changes in the environment of the amplifiers and high-megohm resistors.

This area requires refinement, but should not be an insurmountable

problem. There are, however, three basic disadvantages to these

systems:

(1) Not transferable without loss of calibration,

(2) Relatively high radiation hazard, and

(3) Stronger sources required for larger vessels.

In the early part of the density reference system program, it was

assumed that the gamma-ray method should be evaluated in the weighing

cryostat, and bracketing was provided to accommodate the 4-curie-source

system.. As the program progressed, however, it was apparent that the
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disadvantages listed above virtually eliminated this form of instru-

mentation as a density transfer standard, and that nothing would be

gained by further testing of the gamma system in its available form.

It is possible that a gamma-ray source and detector system could be

developed for placement inside a storage vessel. This might be similar

to the beta-ray attenuation system, but without the limitation of short

source-to-detector path lengths. Such systems have been proposed and

if one becomes available it would be profitable to test it in the density

reference system.

4. 3 Capacitance Method

For any capacitor of simple, fixed geometry, the measured

electrical capacitance varies directly with the dielectric constant of the

medium between the electrodes. The relation between dielectric constant

and density is, for hydrogen, quite well represented by the Clausius-

Mo~ssotti equation

- PP (11)
:" ¢ e+2

where

is dielectric constant

p is density

P is specific polarization, a property having dimensions

of reciprocal density.

The. polarization "constant" P has been found to increase by

about 0. 1 percent when hydrogen changes from liquid to 0. 5 solid frac-

[6]
tion at triple-point pressure.
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The dielectric constant for triple-point liquid hydrogen is

I. 251 5.[6] The dielectric constant for any slush sample can therefore

be obtained with high accuracy from the ratio of the capacitance of the

condenser with sample to the capacitance in triplc-point liquid. l[aving

determined e, the density of slush is calculated from the Clausius-

Mossotti equation. Table 1 is a tabulation of e, p, and P for hydrogen

from normal-boiling to 0. 5 solid fraction.

Equation (11) can be written

1 + 2 Po (1 - PP) + 3 PP 3 PP
1e - PP 1 1 - PP-

The variation in e is then given by

de = dP+ dP + (-3pdP+3P (12)

Triple point liquid density is 77. 017 kg/m3; 0. 5 solid fraction slush

density is 81. 526 kg/m3 . The corresponding polarizability values are

1. 0046 and 1. 0056 cm 3 /g. Using the average of these values for p and

P and the difference between the extremes for dP and dp we have

d 3 x 0. 07927 x 0. 0010 + 3 X 1. 0051 x 0. 00451
(1 - 1. 0051 X 0. 07929)2

= 2. 81 X 10-4 + 1. 61 10 - 2 .

This is the change in e which results when hydrogen changes

from triple-point to 0. 5 solid fraction slush. The first term is due to

the change in polarizability; the second term is due to the change in

density. If we start from the triple-point liquid value of e 1. 25158,

the polarizability term accounts for a change in e of 0. 02 percent,

while the density term accounts for a 1. 3 percent change.
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The above analysis applies when all of the dielectric between the

capacitor electrodes is either liquid or slush, i. e. , when the capacitor

is totally submerged and when the density distribution is uniform.

Non-uniform distribution will result if the electrode spacing is too close

and/or if mixing of the slush does not produce a homogeneous fluid.

After some preliminary testing of various capacitor configurations,

the design shown in figure 14 was developed for testing in the density

reference system. The capacitor is composed of a 1. 27-cm-diameter

brass rod 33 cm long which is rigidly supported 0. 64 cm away from a

section of thin-wall brass cylinder. The cylinder section has a radius

of 8. 5 cm, arc length of 8. 3 cm, and extends 2. 5 cm beyond the rod

at each end. The section of cylinder forms one electrode; the adjacent

rod is the other. The capacitance in triple-point liquid, (77. 017 kg m - 3 )

was 18. 667 pf. The capacitor was located near the perimeter of the

weigh-can, and the stirring pattern was such that solids were raised

and swirled in a-circular path between the electrodes.

From the assumption that the capacitance is directly proportional

to the relative dielectric constant, it follows that

C = Ae = A(1. 25158) = 18. 667 pf,

giving a geometrical constant of

A = 14. 915 pf,

which is the "empty space" capacitance. Since a capacitance measure-

ment of 18 pf having an uncertainty of +0. 001 pf or less can readily be

obtained with shielded leads and a good three-terminal capacitance bridge,

it is apparent that the relative dielectric constant, and hence the apparent

density of the fluid between the electrodes, can be obtained with high

accuracy.
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A capacitance uncertainty of 0. 001 pf in 18 pf is about 0. 005

percent, so an uncertainty in e of 0. 01 percent is not unreasonable.

From equation (12) it is possible to obtain the corresponding uncertainty

in. density. Using density and polarizability values for 0. 5 solid fraction

slush, and assuming 0. 1 percent uncertainty in the value of P, gives

the following:

p = 81. 526 kg m - 3 = 0.0815 g cm- 3

P = 1.0056 cm 3 g-_

dP = 1. 0056 X 10-3

de = 1. 2679 x 10-4.

Then equation (12) is

3(0. 0815 X 1. 0056 X 10-3 + 1. 0056 x dP)
(1 - 1. 0056 X 0. 0 8 15)2

1. 2679 x 10-4= 0. 2459 x 10 - + 3. 0168 dP
0. 8427 0. 8427

= 2.918 X 10 - 4 + 3. 580 dp

-1. 650 x 10 - 4 = 3. 580 dp

dp 4. 61 X 10-5 g/cm3

dp 4. 61 x 10-5do_4 6 0 - '
=5. 66 X 10-4

P 8. 15 x 10- 2

0. 057%.

The conclusion of the analysis is that the apparent density of the slush

between the capacitor electrodes can be obtained with an accuracy which

exceeds that of the density reference system, the reasons being that (1)

the dielectric constant of triple-point liquid hydrogen is better known

than the density, and (2) it is easier to make accurate comparisons of

capacitors than masses.
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The principal values of testing capacitors in the density

reference system were (1) to develop a good capacitor geometry for

representative sampling, and (2) to develop the best possible stirring

pattern for maintaining a homogeneous mixture of slush.

The capacitance method can of course, be used for "point" as well

as "zone" sensing of liquid or slush density. A popular capacitor design

for sensing at a given level in a vessel is a "bullseye" made up of several

concentric rings of small cross section rod or wire. Tests in the density

reference system were made to determine the minimum spacing between

rings which would allow slush to fall through rather than be supported by

a horizontal "bullseye" capacitor.

It was found that very slight agitation of the fluid, or very slight

vibration of the capacitor, such as would usually be present in containers

under field conditions, would prevent the settling solids from bridging

across rings spaced one cm apart. Capacitance-type point sensors of

this kind will give the density in the immediate vicinity of the probe, and

from the density the phase, whether vapor, liquid, or slush, at the level

of the sensor will'be apparent.

4. 4 Microwave Method for Dielectric Measurement

The capacitance measurements described above result in density

determination because the dielectric constant of the fluid between the

capacitor electrodes can be derived from the capacitance. An alternative

method for measurement of dielectric constant is based on time delay in

propagation of a microwave signal. The density then follows -from the

Clausius-Mossotti functAon, Two advantages of the microwave method

are:
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1) The sample is an unrestricted column of fluid between two

microwave horns which can be spaced any desired distance apart.

2) The output signal is a frequency, which can be easily trans-

mitted to a data center or, alternately, can be converted to a proportional

voltage signal.

The method is illustrated in figure 15. The microwave signal

generator is swept in frequency over its spectrum. The signal travels

from the generator to the mixer by two paths, the reference and the test

channels. It is assumed that both paths are dispersionless.

The instantaneous frequencies of the two signals fed into the mixer

are designated f and f ' and both vary linearly at the same time rate.

The frequencies differ, however, because of the time'delay in the signal

going through the fluid in the cryostat.

The test signal undergoes a total phase shift given by

t = d /e l = v4' (14)dw c

where t is the g roup delay time, t, is the distance between horn faces,

and c is the free-space velocity of propagation.

A finite change in the dielectric constant of the fluid produces a

finite change in the group delay time,

e Ae = At -
3¢ eZc /7'

The frequency of the signal generator is swept over the band-

width (f2 - fl) in time t . The average rate of change of frequency is,

Af (fz - fl )

At t
5
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Figure 15. Microwave Method for Density Measurement.



The difference between the instantaneous reference and test fre-

quencies is

(fz - fl ) ¢

Af - ,
Zct f~

from which

Zct /7
s

e (f2-fl) (f2 - fl). (15)

The mixer, then, is essentially a product demodulator. Its out-

put spectrum contains f and f' frequency sums and differences, but all

except the difference, f2 - fl, are filtered out.

An analysis of the variation in equation (15) can be made to

estimate the accuracy with which the change in dielectric constant (/e)

can be measured. Typical values and associated uncertainties are as

follows:

t = 10 - 3 seconds; dt +i0- s seconds, the sweep
s S

period of the signal generator.

c = 3 X 101° cm/s; dc = +1 cm/s, the free space

velocity of electromagnetic radiation.

e = 1. 25158, / = 1. 119; d/f = ±10-5, the dielectric

constant of triple-point liquid hydrogen.

Af = 50 Hz; d(Af) = +0. 1 Hz, a typical frequency shift

and the uncertainty of the counter used.

(f2 -f) 3 X 109 Hz; d(f2 - fl) = +107, the frequency sweep

of the generator.

t = 90 cm; dt = +0. 2 cm, the distance between horn

face s.
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The root mean square error is

Fd(Ae)1 l-o/I0- 2 5 110- N (l0
lhei -s Lt0o- +(3 xi1 + 1 1119) + i5 

rms

+ (3 1 0 7 2+ 9x0- )122

= (10-4 + o021 + 8 x 10-11+ 4 X 10- -+ 10 - + 5 x 10-8)2

1. 1 x 10-2 = 1. 1 percent.

Conversion from Ae to Ap, i. e., from change in dielectric constant to

change in density, is again byway of the C-M function, as explained in

section 4. 3.

Most of this error in the Ae measurement results from uncer-

tainty in the sweep period of the signal generator, which could be. im-

proved with a better instrument. It is likely that an uncertainty of +0. 5

percent or less could be achieved by this microwave method of slush

density measurement, but we were not able to develop readout instru-

mentation to demonstrate this within the scope of the density reference

system contract.

One of the principal difficulties experienced with the microwave

studies in the density reference system was the lack of sufficient open

space in the weigh-can interior. This was partly because the program

schedule required simultaneous evaluation of more than one transducer,

but there was also considerable difficulty because of the proximity of the

stirring rotor and spiral. These moving surfaces caused spurious

reflections of the microwave signal, resulting in uncertainty in the

"true" time delay measurement.'
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To obtain additional data, under more favorable conditions, a

swept frequency microwave system was installed in the one-m3 hydrogen

slush upgrading vessel. Figure 16 shows data obtained in the upgrader for

various levels of settled slush. The microwave horn faces were 90 cm

apart; the lower horn face was 20 cm above the dewar bottom. The

settled slush depths shown in figure 16 refer to distances above the lower

horn face. The balance of the sample column, reaching to the upper horn,

is assumed to be triple-point liquid. The effective dielectric constant

thus becomes a direct function of the settled slush level.

The system was normalized, i. e., Af set equal to zero, with

triple-point liquid between the horns. When slush was introduced, a fre-

quency shift proportional to the change in effective, dielectric constant

was observed, as shown in figure 16. The mean or effective density then

derives from the Clausius-Mossotti function; the deviation from linearity

of e vs. p in the C-M function is about 0. 8 percent over the density

range from triple point liquid to freshly settled slush having a density

of about 81. 1 kg/m3 .

An independent estimate of density can be made by assuming a

density for settled slush based on previous experience. A reasonable

estimate for fresh settled slush is 81. 1 kg/m3 , i. e., a solid mass frac-

tion of 0. 45. The average density of the column then becomes the weight-

ed averages of the triple point liquid and settled slush depths. A density

scale based on this assumption is shown on the right side of figure 16.
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This is simply another way of expressing the settled slush depth, and

the two vertical scales are proportional to one another. A test of the

method is to plot the frequency shift against either vertical scale and

·observe the scatter of the data points and the deviation from linearity.

The data indicate that the method can be used to locate a settled slush

level to within about five centimeters if the above assumptions regard-

ing liquid and settled slush densities are made. Conversely, if an un-

known density distribution is assumed, the mean density can be deter-

mined with a sensitivity of a few tenths of a kg/m3 . It appears, at this

point, that some refinement of readout instrumentation is all that would

be required to make this method competitive with the more common

capacitance measurement method.

4. 5 Velocity of Sound

One more method of hydrogen liquid and slush density sensing

was tested in the density reference system. This was velocity of sound,

which has been measured as a function of density in fluid parahydrogen

by Younglove[
7 ] His results are shown plotted in figure 17, from

which it is apparent that a density change of 0. 001 'g cm - s (1 kg m ' 3 )

or less, is detectable by this method.

The transducer shown in figure 18 was. designed for testing in the

density reference system. It consists of two quartz crystals held a fixed

distance apart in an open framework which allows free passage of fluid

between the crystal faces. Of major concern, of course, was the ques-

tion of effect of solid particles, i..e., slush in the sonic path.

We were able to duplicate Younglove's results in the liquid phase

between normal-boiling and triple-point densities, but even a small solid
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fraction resulted in scatter of reflected frequencies, making it impossible

to achieve the constructive interference on which the method depends.

Accordingly, it must be concluded that sonic methods do not look prom-

ising for slush density measurements.

5. Summary

Table 2 summarizes the hydrogen slush density transducer testing,

with emphasis on the characteristics necessary for a slush density trans-

fer standard. Beta-ray attenuation can give densities. with uncertainties

of +1. 0 percent, and may be worth considering for point density sensing

in some applications. Gamma-ray attenuation offers higher accuracy,

but is not at present suitable for use as a transfer standard. Methods

depending on change in dielectric constant are the simplest and most

predictable, as well as the most accurate, for fluids which have a known

dielectric constant vs. density relationship. The Clausius-Mossotti func-

tion provides this relationship for hydrogen.

The direct comparison of capacitances in a stable capacitor of

simple geometry is the recommended method for hydrogen slush density

measurements. A capacitor design which allows free passage of slush

between the electrodes was developed and tested with satisfactory results

in the density reference system. A much larger version of this "rod-to-

blade" capacitor design is being used with a high degree of success in a

one-m3 hydrogen slush upgrading vessel at NBS. Still larger versions

have been designed for installation in 11. 4 m 3 and 87 m 3 slush vessels

which are part of a new facility under construction at the George C. Mar-

shall Space Flight Center in Huntsville.

It is not really necessary to calibrate the capacitors in the density

reference system.. All that is required is one accurate reading of the
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Table 2

Hydrogen Slush Density Transducer Summary

Y C MW

Density 1% 0. 5' 0. 5% 0. 5%
Unc ertainty

Special Simple Large
Simple Probe No Probe

Advantag e s System Sample

Special 1. Complex Electronics .1. Radiation Hazard Spurious
Problems 2. Detector Breakdown 2. Not Transferable Reflections

Transfer
Possible No Yes Possible

Standard
.I



capacitance with triple-point liquid hydrogen between the electrodes.

After this, the dielectric constant and corresponding density can be ob-

tained for any slush sample.. The temperature does not change, of

course, so no temperature correction is required. It is important to be

assured, however, that slush passes freely between the electrodes; this

can be tested by stirring the mixture at several speeds until a stable

slush density reading is obtained.
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Appendix A

The final working equation of the:density reference system is

x +
P M [(Mb+ M) + T(Mbl Mb0)]

The terms in the equation are

o = slush density,

P = triple-point liquid hydrogen density,

Mb buoyed mass of solids in weigh-can,

M mass of triple-point liquid which exactly fills the

weigh-can,

T elapsed time between slush density transducer reading
2

and the weighing for determination of Mb,

T = time interval between weighings made to determine
1

heat leak,

Mbl = buoyed mass of solids at end of interval T1, and

Mb0 = buoyed mass of solids at beginning of interval T 1 .

A consistent set of values for the experimental variables, and

the value of the one systematic parameter o0., are as follows:

lM, = 117 + 2. 34 g
D

MbO

Mbl1

T 2

M

%,

117 + 2. 34 g

92.5 + 1. 8 5 g

8000 + 10 s

- 900 + 1 s

2000 + 40 g

77. 017 + 0. 077 kg m - 3.
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It is assumed that all of the weighings may contain uncertainties of as

much as -± percent. The values of M b and Mb0 are for 0.'50 solid frac-

tion slush. The value of Mbl was obtained by assuming a heat influx to

the slush in the weigh-can of 2. 0 watts. (The actual heat influx measured

during several experiments was about 1; 3 watts. ) The time intervals

T
1

and T2, togetherwith their uncertainties, are reasonable estimates.

The partial derivatives obtained from the working equation are

as follows:

aP
aMb

ao

.Mbo

?P

aMb 1

PL
M

- pT

M-PT

MT 1

1

2 2
Mr T M~CM1

Mb + M T2 (MbO Mbl)

M M Tt, tIvl,

Each term of the form (bp/8X) 2 (dX) 2 can now be evaluated. The results

are as follows:
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o' or y Mb, (3. 8!; x I)-2)2 (2. 34)2 - 8. 12 x 10

For y:- Mb0, (4. 33 X 10-3)2 (2. 34)2 1. 04 x 10-4

For X = Mbl, (4. 33 X 10-3)2 (1. 85)2 6.45 x 10-5

For*X = T 1 , (1. 10 x 10-4)2 (10)2 = 1. 21 x 10-6

For X = T 2 , (-1. 18 x 10-4)2 (1)2 = 1. 39 x 10-8

For X = Mt, (-2. 21 x 10-3)2 (40)2 = 7.83 X 10-3

For X = Pt. (1. 06)2 (. 077)2 = 6. 63 x 10-3 .

From the above tabulation, it is easy to see which terms contribute most

to the final uncertainty in P. The two percent uncertainties in Mb and

M each contribute slightly more than the 0. 1 percent uncertainty in the

triple-point liquid density p,. None of the new variables introduced by

the heat leak correction make a significant contribution to the final un-

certainty.

The total squared uncertainty in p is obtained by adding the tabu-

lated values, which gives (dp)2 = 0. 0227 kg m - 3 , or dP = 0. 15 kg m 3 .

The relative error, for 0. 5 solid fraction slush, is 0. 15/81. 35 = +0. 18

percent.
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D-6197

D- 13123A
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Weigh-Can Details

Calibration Weight Column

Dewar for Density Reference System

Top.Plate Sub-Assemblies

Top Plate Details

General Assembly 50 Liter Hydrogen
Slush Generator

Slush Container of Generator

Nitrogen Cooled Radiation Shield

Vacuum Jacket of Generator

Generator Top Plate

Top Plate for Slush Container of
Generator

Generator Details 2-8

Generator Details 14-26

Transfer Line Details

Sub-Assembly J, K Vacuum Pumpout
Valve

DRS Dewar Details

DRS Dewar Details
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I Figure 1B. Cutaway of Assembled
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Figure 9B. Nitrogen Cooler Radiation Shield.
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Figure 13B. Generator Details 2-8.
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Figure 15B. Transfer Line Details.
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Figure 16B. Sub-Assembly J, K Vacuum Pumpout Valve.
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