183 research outputs found

    The Usage of Edible Additives with Different Gluten Quality in Baking Products

    Get PDF
    One of the dominating factors in the foods quality besides the wheat quality,grinding and baking technology,is also the impact of edible additives in these products.These agents are nothing but chemical base products,that change the physical and rheological properties of baking products with the help of oxidation and reduction reactions placed in dough.The structures and quantitative formations of gluten proteins define dough qualities for cakes,biscuits and wafers.Reductants are substances,which soften gluten,weakening its links.Reductants react with disulfide SS in dough.Their impact is the reduction of the general molecular weight of the gluten proteins aggregates.The usage of reductants leads in the incensement of dough volume.The fixed gas inside the dough can develop a soft dough. The first scale of the reaction is the interaction of reductants with the gluten proteins. This reaction is an exchange SH/SS that releases a protein unit and leaves a SS link between protein and reductant. This SS part can interact with the reductant,leaving the second protein group free and giving the oxidized form to it.The most used reductants are L-Cysteins and Metabisulfite of Sodium. From the evidences made, results that the usage of these reductants leads to an advanced incensement of the dough and to a great form of the ultimate product. Based on our research for produced wheat’s in our country and those which are imported, for a certain flour radius and choice, the research is done among the evolution of redox agents interaction based upon the production of products like cakes,biscuits,wafers etc

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Identifying developmental coordination disorder: MOQ-T validity as a fast screening instrument based on teachers' ratings and its relationship with praxic and visuospatial working memory deficits.

    Get PDF
    The present study was devoted to test the validity of the Italian adaptation of the Motor Observation Questionnaire for Teachers (MOQ-T, Schoemaker, Flapper, Reinders-Messelink, & De Kloet, 2008) as a fast screening instrument, based on teachers' ratings, for detecting developmental coordination disorders symptoms and to study its relationship with praxic and visuospatial working memory deficits. In a first study on a large sample of children, we assessed the reliability and structure of the Italian adaptation of the MOQ-T. Results showed a good reliability of the questionnaire and a hierarchical structure with two first-order factors (reflecting motor and handwriting skills), which are influenced by a second-order factor (general motor function) at the top. In a second study, we looked at the external validity of the MOQ-T and found that children with symptoms of Developmental Coordination Disorder (children with high scores on the MOQ-T) also had difficulty reproducing gestures, either imitating others or in response to verbal prompts. Our results also showed that children with high MOQ-T scores had visuospatial WM impairments. The theoretical and clinical implications of these findings are discussed

    Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes

    Get PDF
    Hydroxyproline-rich glycoproteins (HRGP) comprise a super-family of extracellular structural glycoproteins whose precise roles in plant cell wall assembly and functioning remain to be elucidated. However, their extended structure and repetitive block co-polymer character of HRGPs may mediate their self-assembly as wall scaffolds by like-with-like alignment of their hydrophobic peptide and hydrophilic glycopeptide modules. Intermolecular crosslinking further stabilizes the scaffold. Thus the design of HRGP-based scaffolds may have practical applications in bionanotechnology and medicine. As a first step, we have used single-molecule or single-aggregate atomic force microscopy (AFM) to visualize the structure of YK20, an amphiphilic HRGP comprised entirely of 20 tandem repeats of: Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr-Tyr-Tyr-Lys. YK20 formed tightly aggregated coils at low ionic strength, but networks of entangled chains with a porosity of ~0.5–3 μm at higher ionic strength. As a second step we have begun to design HRGP-carbon nanotube composites. Single-walled carbon nanotubes (SWNTs) can be considered as seamless cylinders rolled up from graphene sheets. These unique all-carbon structures have extraordinary aromatic and hydrophobic properties and form aggregated bundles due to strong inter-tube van der Waals interactions. Sonicating aggregated SWNT bundles with aqueous YK20 solubilized them presumably by interaction with the repetitive, hydrophobic, Tyr-rich peptide modules of YK20 with retention of the extended polyproline-II character. This may allow YK20 to form extended structures that could potentially be used as scaffolds for site-directed assembly of nanomaterials

    Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes

    Get PDF
    The pathways involved in cellular uptake and accumulation of iminopyridine complexes of general formula [Ru(η6-p-cymene)(N,N-dimethyl-N′-[(E)-pyridine-2-ylmethylidene]benzene-1,4-diamine)X]PF6 bearing two different halido ligands X = Cl or I, have been explored. The ratio of passive/active cellular accumulation of Ru in A2780 human ovarian cancer cells is compared and contrasted with cisplatin. Also, saturation of cellular uptake, time-dependence of cellular influx/efflux equilibria, together with endocytotic pathways such as caveolae and facilitated diffusion are investigated and discussed. Temperature dependence studies of Ru accumulation in the A2780 cells show that in contrast to cisplatin (CDDP) and chlorido complex 1, which are taken up largely through active transport, the iodido complex 2 enters cells via passive transport. The cellular efflux of Ru is slow (ca. 25% retained after 72 h) and is partially inhibited by verapamil, implicating the P-gp protein in the efflux mechanism. Ouabain inhibition experiments suggest that the cellular uptake of these ruthenium complexes relies at least in part on facilitated diffusion, and in particular is dependent on the membrane potential. In addition the finding that depletion of cellular ATP with antimycin A had little effect on cellular Ru accumulation from iodido complex 2 is consistent with passive diffusion. In contrast, ATP depletion caused a major increase in cellular accumulation of ruthenium from chlorido complex 1

    Smooth Muscle Cell Phenotype Modulation and Contraction on Native and Cross-Linked Polyelectrolyte Multilayers

    Get PDF
    Smooth muscle cells convert between a motile, proliferative “synthetic ” phenotype and a sessile, “contractile ” phenotype. The ability to manipulate the phenotype of aortic smooth muscle cells with thin biocompatible polyelectrolyte multilayers (PEMUs) with common surface chemical characteristics but varying stiffness was investigated. The stiffness of (PAH/ PAA) PEMUs was varied by heating to form covalent amide bond cross-links between the layers. Atomic force microscopy (AFM) showed that cross-linked PEMUs were thinner than those that were not cross-linked. AFM nanoindentation demonstrated that the Young’s modulus ranged from 6 MPa for hydrated native PEMUs to more than 8 GPa for maximally cross-linked PEMUs. Rat aortic A7r5 smooth muscle cells cultured on native PEMUs exhibited morphology and motility of synthetic cells and expression of the synthetic phenotype markers vimentin, tropomyosin 4, and nonmuscle myosin heavy chain IIB (nmMHCIIB). In comparison, cells cultured on maximally cross-linked PEMUs exhibited the phenotype markers calponin, smooth muscle myosin heavy chain (smMHC), myocardin, transgelin, and smooth muscle R-actin (smActin) that are characteristic of the smooth muscle “contractile ” phenotype. Consistent with those cells being “contractile”, A7r5 cells grown on cross-linked PEMUs produced contractile force when stimulated with a Ca2+ ionophore

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎĽm) to thinned sensors (about 240 ÎĽm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 Ă— 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎĽm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses.

    Get PDF
    BACKGROUND World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19). METHODS We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry. RESULTS At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration. CONCLUSIONS These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.)
    • …
    corecore