25 research outputs found

    Single-step genome-wide association study for social genetic effects and direct genetic effects on growth in Landrace pigs

    Get PDF
    In livestock social interactions, social genetic effects (SGE) represent associations between phenotype of one individual and genotype of another. Such associations occur when the trait of interest is affected by transmissible phenotypes of social partners. The aim of this study was to estimate SGE and direct genetic effects (DGE, genetic effects of an individual on its own phenotype) on average daily gain (ADG) in Landrace pigs, and to conduct single-step genome-wide association study using SGE and DGE as dependent variables to identify quantitative trait loci (QTLs) and their positional candidate genes. A total of 1,041 Landrace pigs were genotyped using the Porcine SNP 60K BeadChip. Estimates of the two effects were obtained using an extended animal model. The SGE contributed 16% of the total heritable variation of ADG. The total heritability estimated by the extended animal model including both SGE and DGE was 0.52. The single-step genome-wide association study identified a total of 23 QTL windows for the SGE on ADG distributed across three chromosomes (i.e., SSC1, SSC2, and SSC6). Positional candidate genes within these QTL regions included PRDM13, MAP3K7, CNR1, HTR1E, IL4, IL5, IL13, KIF3A, EFHD2, SLC38A7, mTOR, CNOT1, PLCB2, GABRR1, and GABRR2, which have biological roles in neuropsychiatric processes. The results of biological pathway and gene network analyses also support the association of the neuropsychiatric processes with SGE on ADG in pigs. Additionally, a total of 11 QTL windows for DGE on ADG in SSC2, 3, 6, 9, 10, 12, 14, 16, and 17 were detected with positional candidate genes such as ARL15. We found a putative pleotropic QTL for both SGE and DGE on ADG on SSC6. Our results in this study provide important insights that can help facilitate a better understanding of the molecular basis of SGE for socially affected traits.info:eu-repo/semantics/publishedVersio

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis

    No full text
    Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program. © 2016 Scandinavian Plant Physiology Society1

    NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis

    No full text
    Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program. © 2016 Scandinavian Plant Physiology Society1331sciescopu

    Characterization of the 5′-flanking Region in Bovine

    No full text
    Bovine embryonic stem cells have potential for use in research, such as transgenic cattle generation and the study of developmental gene regulation. The Nanog may play a critical role in maintenance of the undifferentiated state of embryonic stem cells in the bovine, as in murine and human. Nevertheless, efforts to study the bovine Nanog for pluripotency-maintaining factors have been insufficient. In this study, in order to understand the mechanisms of transcriptional regulation of the bovine Nanog, the 5′-flanking region of the Nanog was isolated from ear cells of Hanwoo. Results of transient transfection using a luciferase reporter gene under the control of serially deleted 5′-flanking sequences revealed that the −134 to −19 region contained the positive regulatory sequences for the transcription of the bovine Nanog. Results from mutagenesis studies demonstrated that the Sp1-binding site that is located in the proximal promoter region plays an important role in transcriptional activity of the bovine Nanog promoter. The electrophoretic mobility shift assay with the Sp1 specific antibody confirmed the specific binding of Sp1 transcription factor to this site. In addition, significant inhibition of Nanog promoter activity by the Sp1 mutant was observed in murine embryonic stem cells. Furthermore, chromatin-immunoprecipitation assay with the Sp1 specific antibody confirmed the specific binding of Sp1 transcription factor to this site. These results suggest that Sp1 is an essential regulatory factor for bovine Nanog transcriptional activity
    corecore