22 research outputs found

    Potential Transcriptional Biomarkers to Guide Glucocorticoid Replacement in Autoimmune Addison's Disease

    Get PDF
    Background No reliable biomarkers exist to guide glucocorticoid (GC) replacement treatment in autoimmune Addison’s disease (AAD), leading to overtreatment with alarming and persistent side effects or undertreatment, which could be fatal. Objective To explore changes in gene expression following different GC replacement doses as a means of identifying candidate transcriptional biomarkers to guide GC replacement in AAD. Methods Step 1: Global microarray expression analysis on RNA from whole blood before and after intravenous infusion of 100 mg hydrocortisone (HC) in 10 patients with AAD. In 3 of the most highly upregulated genes, we performed real-time PCR (rt-PCR) to compare gene expression levels before and 3, 4, and 6 hours after the HC infusion. Step 2: Rt-PCR to compare expression levels of 93 GC-regulated genes in normal versus very low morning cortisol levels in 27 patients with AAD. Results Step 1: Two hours after infusion of 100 mg HC, there was a marked increase in FKBP5, MMP9, and DSIPI expression levels. MMP9 and DSIPI expression levels correlated with serum cortisol. Step 2: Expression levels of CEBPB, DDIT4, FKBP5, DSIPI, and VDR were increased and levels of ADARB1, ARIDB5, and POU2F1 decreased in normal versus very low morning cortisol. Normal serum cortisol levels positively correlated with DSIPI, DDIT4, and FKBP5 expression. Conclusions We introduce gene expression as a novel approach to guide GC replacement in AAD. We suggest that gene expression of DSIPI, DDIT4, and FKBP5 are particularly promising candidate biomarkers of GC replacement, followed by MMP9, CEBPB, VDR, ADARB1, ARID5B, and POU2F1.publishedVersio

    Plasma-Metanephrines in Patients with Autoimmune Addison’s Disease with and without Residual Adrenocortical Function

    Get PDF
    Purpose: Residual adrenocortical function, RAF, has recently been demonstrated in one-third of patients with autoimmune Addison’s disease (AAD). Here, we set out to explore any influence of RAF on the levels of plasma metanephrines and any changes following stimulation with cosyntropin. Methods: We included 50 patients with verified RAF and 20 patients without RAF who served as controls upon cosyntropin stimulation testing. The patients had abstained from glucocorticoid and fludrocortisone replacement > 18 and 24 h, respectively, prior to morning blood sampling. The samples were obtained before and 30 and 60 min after cosyntropin stimulation and analyzed for serum cortisol, plasma metanephrine (MN), and normetanephrine (NMN) by liquid-chromatography tandem-mass pectrometry (LC-MS/MS). Results: Among the 70 patients with AAD, MN was detectable in 33%, 25%, and 26% at baseline, 30 min, and 60 min after cosyntropin stimulation, respectively. Patients with RAF were more likely to have detectable MN at baseline (p = 0.035) and at the time of 60 min (p = 0.048) compared to patients without RAF. There was a positive correlation between detectable MN and the level of cortisol at all time points (p = 0.02, p = 0.04, p < 0.001). No difference was noted for NMN levels, which remained within the normal reference ranges. Conclusion: Even very small amounts of endogenous cortisol production affect MN levels in patients with AAD

    Residual Corticosteroid Production in Autoimmune Addison Disease

    Get PDF
    Context - Contrary to current dogma, growing evidence suggests that some patients with autoimmune Addison disease (AAD) produce corticosteroids even years after diagnosis. Objective - To determine frequencies and clinical features of residual corticosteroid production in patients with AAD. Design - Two-staged, cross-sectional clinical study in 17 centers (Norway, Sweden, and Germany). Residual glucocorticoid (GC) production was defined as quantifiable serum cortisol and 11-deoxycortisol and residual mineralocorticoid (MC) production as quantifiable serum aldosterone and corticosterone after > 18 hours of medication fasting. Corticosteroids were analyzed by liquid chromatography–tandem mass spectrometry. Clinical variables included frequency of adrenal crises and quality of life. Peak cortisol response was evaluated by a standard 250 µg cosyntropin test. Results - Fifty-eight (30.2%) of 192 patients had residual GC production, more common in men (n = 33; P P P P P P P  Conclusion - In established AAD, one-third of the patients still produce GCs even decades after diagnosis. Residual production is more common in men and in patients with shorter disease duration but is not associated with adrenal crises or quality of life
    corecore