270 research outputs found
Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia
Abstract
The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping) systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting) reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context
Recommended from our members
Modeling Virus Transport and Removal during Storage and Recovery in Heterogeneous Aquifers
A quantitative understanding of virus removal during aquifer storage and recovery (ASR) in physically and geochemically heterogeneous aquifers is needed to accurately assess human health risks from viral infections. A two-dimensional axisymmetric numerical model incorporating processes of virus attachment, detachment, and inactivation in aqueous and solid phases was developed to systematically evaluate the virus removal performance of ASR schemes. Physical heterogeneity was considered as either layered or randomly distributed hydraulic conductivities (with selected variance and horizontal correlation length). Geochemical heterogeneity in the aquifer was accounted for using Colloid Filtration Theory to predict the spatial distribution of attachment rate coefficient. Simulation results demonstrate that the combined effects of aquifer physical heterogeneity and spatial variability of attachment rate resulted in higher virus concentrations in the recovered water at the ASR well (i.e. reduced virus removal). While the sticking efficiency of viruses to aquifer sediments was found to significantly influence virus concentration in the recovered water, the solid phase inactivation under realistic field conditions combined with the duration of storage phase had a predominant influence on the overall virus removal. The relative importance of physical heterogeneity increased under physicochemical conditions that reduced virus removal (e.g. lower value of sticking efficiency or solid phase inactivation rate). This study provides valuable insight on site selection of ASR projects and an approach to optimize ASR operational parameters (e.g. storage time) for virus removal and to minimize costs associated with post-recovery treatment
Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site
© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
This author accepted manuscript is made available following 24 month embargo from date of publication (Oct 2017) in accordance with the publisher’s archiving policyEnteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day−1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses ( μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
Porous media pressure distribution in centrifugal fields
The simplest use of centrifuges to measure soil properties relies on steady state conditions. Analytical solutions, especially if they are simple, make interpretation of data more direct and transparent. Previous approximations are simplified and have a greatly improved accuracy. Using previous examples as a test, the error on pressure is always less than 1%, compared to about 10% with previous approximations. Key Points using centrifuges to measure soil water conductivity for steady state conditions analytical solutions are obtained to interpret data directly and transparently error on pressure is less than 1% instead of 10% with previous solution
Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.
The
environmental chemodynamics of hydrophobic organic chemicals
(HOCs) are often rate-limited by diffusion in stagnant boundary layers.
This study investigated whether motile microorganisms can act as microbial
carriers that enhance mass transfer of HOCs through diffusive boundary
layers. A new experimental system was developed that allows (1) generation
of concentration gradients of HOCs under the microscope, (2) exposure
and direct observation of microorganisms in such gradients, and (3)
quantification of HOC mass transfer. Silicone O-rings were integrated
into a Dunn chemotaxis chamber to serve as sink and source for polycyclic
aromatic hydrocarbons (PAHs). This resulted in stable concentration
gradients in water (>24 h). Adding the model organism <i>Tetrahymena
pyriformis</i> to the experimental system enhanced PAH mass transfer
up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement
with hydrophobicity indicated PAH co-transport with the motile organisms.
Fluorescence microscopy confirmed such transport. The effective diffusivity
of <i>T. pyriformis</i>, determined by video imaging microscopy,
was found to exceed molecular diffusivities of the PAHs up to four-fold.
Cell-bound PAH fractions were determined to range from 28% (naphthalene)
to 92% (pyrene). Motile microorganisms can therefore function as effective
carriers for HOCs under diffusive conditions and might significantly
enhance mobility and availability of HOCs
- …