227 research outputs found
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The biomechanics of Cornus canadensis stamens are ideal for catapulting pollen vertically
1. Rapid movements in fungi and plants have evolved in different species to facilitate the dispersal of spores and seeds. The mechanisms of action can differ among species, but the effectiveness of these movements has rarely, if ever, been tested. Here we show through a quantitative biomechanical analysis that the stamens of Cornus canadensis L. (bunchberry) are ideal for catapulting pollen vertically at high speeds. 2. We develop a biomechanical model to describe the explosive launch of pollen from the flowers of bunchberry. The model determines the equation of motion for the stamens based only on the morphology and measurements of the parts of the stamens. To measure the motion of the stamens to compare with our model, we analysed individual frames of a video taken at 10 000 fps. 3. The thecae of adjacent stamens dehisce in bud so that the stomia face each other, retaining pollen between neighbouring anthers. As the flowers open, pollen is accelerated vertically as long as the thecae remain in contact. Pollen is released only when the anthers move horizontally and separate. 4. The observed motion of the stamens matches the results from our model through release of the pollen. The model reveals that pollen release (horizontal movement of the anthers) occurs only after the vertical speed is at its maximum. Thus, for this particular catapult mechanism, the morphology of the stamens is optimal for launching light, dry pollen straight upwards at high speed. Pollen launched vertically at high speed both enhances insect pollination by helping to making pollen stick on visiting insects, and also allows for successful wind pollination by propelling pollen into the air column. Seed set by inflorescences in pollinator-exclosure cages further supports the ability of this flower to use wind as a pollination mechanism. Functional Ecology (2007) 21 , 219–225 doi: 10.1111/j.1365-2435.2007.01249.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75735/1/j.1365-2435.2007.01249.x.pd
ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
Anatomical and radiographic appearance of the capuchin monkey thoracic cavity (Cebus apella)
Envenenamento ofídico em crianças: frequência de reações precoces ao antiveneno em pacientes que receberam pré-tratamento com antagonistas H1 e H2 da histamina e hidrocortisona
Expanding the PRAAS spectrum: de novo mutations of immunoproteasome subunit β-type 10 in six infants with SCID-Omenn syndrome
Mutations in proteasome β-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome β2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired β-ring/β-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID. Transplantation and immunomodulatio
Molecular studies of Callithrix pygmaea (Primates, Platyrrhini) based on transferrin intronic and ND1 regions: implications for taxonomy and conservation
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
- …
