67 research outputs found

    Land-use in Europe affects land snail assemblages directly and indirectly by modulating abiotic and biotic drivers

    Get PDF
    Type and intensity of land‐use vary in space and time and strongly contribute to changes in richness and composition of species communities. In this study, we examined land snail communities in forests and grasslands in three regions of Germany. We aimed to quantify the extent to which snail density, diversity, and community composition in forests and grasslands are determined by (1) land‐use intensity, (2) abiotic drivers and (3) biotic substrates, and (4) whether these effects are consistent across regions. In total, we collected 15,607 snail individuals belonging to 71 species and analyzed both direct and indirect effects using structural equation modeling. Snail densities and their local diversity varied across regions and between forest and grassland habitats within a region albeit with contrasting trends. Community composition also differed among regions—more strongly in forests than in grasslands—and each habitat had unique species (18 in forests, 21 in grasslands). In general, the direct impact of land‐use on snail density, diversity, and community structure was on average nine (forests) and seven (grasslands) times lower than the impact of abiotic drivers and biotic substrates which both affected snail assemblages about equally. However, land‐use factors had indirect effects on snail responses through abiotic variables such as soil moisture and soil pH. Furthermore, land‐use factors also had indirect effects via changing biotic substrates, such as plant cover in grasslands and deadwood cover in forests. Our results show that land snails strongly respond to environmental gradients and add an important indicator taxon to the current evidence of land‐use impacts, highlighting the complexity of direct and indirect effects via biotic and abiotic drivers across regions in Central Europe

    Safe use of proton pump inhibitors in patients with cirrhosis

    Get PDF
    Aims: Proton pump inhibitors (PPIs) belong to the most frequently used drugs, also in patients with cirrhosis. PPIs are extensively metabolized by the liver, but practice guidance on prescribing in cirrhosis is lacking. We aim to develop practical guidance on the safe use of PPIs in patients with cirrhosis. Methods: A systematic literature search identified studies on the safety (i.e. adverse events) and pharmacokinetics of PPIs in cirrhotic patients. This evidence and data from the product information was reviewed by an expert panel who classified drugs as safe; no additional risks known; additional risks known; unsafe; or unknown. Guidance was aimed at the oral use of PPIs and categorized by the severity of cirrhosis, using the Child–Turcotte–Pugh (CTP) classification. Results: A total of 69 studies were included. Esomeprazole, omeprazole and rabeprazole were classified as having ‘no additional risks known’. A reduction in maximum dose of omeprazole and rabeprazole is recommended for CTP A and B patients. For patients with CTP C cirrhosis, the only PPI advised is esomeprazole at a maximum dosage of 20 mg per day. Pantoprazole and lansoprazole were classified as unsafe because of 4- to 8-fold increased exposure. The use of PPIs in cirrhotic patients has been associated with the development of infections and hepatic encephalopathy and should be carefully considered. Conclusions: We suggest using esomeprazole, omeprazole or rabeprazole in patients with CTP A or B cirrhosis and only esomeprazole in patients with CTP C. Pharmacokinetic changes are also important to consider when prescribing PPIs to vulnerable, cirrhotic patients

    Implementation of Anaphylaxis Management Guidelines: A Register-Based Study

    Get PDF
    BACKGROUND: Anaphylaxis management guidelines recommend the use of intramuscular adrenaline in severe reactions, complemented by antihistamines and corticoids; secondary prevention includes allergen avoidance and provision of self-applicable first aid drugs. Gaps between recommendations and their implementation have been reported, but only in confined settings. Hence, we analysed nation-wide data on the management of anaphylaxis, evaluating the implementation of guidelines. METHODS: Within the anaphylaxis registry, allergy referral centres across Germany, Austria and Switzerland provided data on severe anaphylaxis cases. Based on patient records, details on reaction circumstances, diagnostic workup and treatment were collected via online questionnaire. Report of anaphylaxis through emergency physicians allowed for validation of registry data. RESULTS: 2114 severe anaphylaxis patients from 58 centres were included. 8% received adrenaline intravenously, 4% intramuscularly; 50% antihistamines, and 51% corticoids. Validation data indicated moderate underreporting of first aid drugs in the Registry. 20% received specific instructions at the time of the reaction; 81% were provided with prophylactic first aid drugs at any time. CONCLUSION: There is a distinct discrepancy between current anaphylaxis management guidelines and their implementation. To improve patient care, a revised approach for medical education and training on the management of severe anaphylaxis is warranted

    Evaluation of information in summaries of product characteristics (SMPCs) on the use of a medicine in patients with hepatic impairment

    Get PDF
    Background: In 2005, the European Medicines Agency (EMA) released guidance on pharmacokinetic studies in patients with hepatic impairment. This guidance describes the design of these studies and what information should be presented in the Summary of Product

    Evaluating the safety and dosing of drugs in patients with liver cirrhosis by literature review and expert opinion

    Get PDF
    INTRODUCTION: Liver cirrhosis can have a major impact on drug pharmacokinetics and pharmacodynamics. Patients with cirrhosis often suffer from potentially preventable adverse drug reactions. Guidelines on safe prescribing for these patients are lacking. The aim of this study is to develop a systematic method for evaluating the safety and optimal dosage of drugs in patients with liver cirrhosis. METHODS AND ANALYSIS: For each drug, a six-step evaluation process will be followed. (1) Available evidence on the pharmacokinetics and safety of a drug in patients with liver cirrhosis will be collected from the Summary of Product Characteristics (SmPC) and a systematic literature review will be performed. (2) Data regarding two outcomes, namely pharmacokinetics and safety, will be extracted and presented in a standardised assessment report. (3) A safety classification and dosage suggestion will be proposed for each drug. (4) An expert panel will discuss the validity and clinical relevance of this suggested advice. (5) Advices will be implemented in all relevant Clinical Decision Support Systems in the Netherlands and published on a website for patients and healthcare professionals. (6) The continuity of the advices will be guaranteed by a yearly check of new literature and comments on the advices. This protocol will be applied in the evaluation of a selection of drugs: (A) drugs used to treat (complications of) liver cirrhosis, and (B) drugs frequently prescribed to the general population. ETHICS AND DISSEMINATION: Since this study does not directly involve human participants, it does not require ethical clearance. Besides implementation on a website and in clinical decision support systems, we aim to publish the generated advices of one or two drug classes in a peer-reviewed journal and at conference meetings

    Safe use of proton pump inhibitors in patients with cirrhosis

    Get PDF
    AimsProton pump inhibitors (PPIs) belong to the most frequently used drugs, also in patients with cirrhosis. PPIs are extensively metabolized by the liver, but practice guidance on prescribing in cirrhosis is lacking. We aim to develop practical guidance on the safe use of PPIs in patients with cirrhosis. MethodsA systematic literature search identified studies on the safety (i.e. adverse events) and pharmacokinetics of PPIs in cirrhotic patients. This evidence and data from the product information was reviewed by an expert panel who classified drugs as safe; no additional risks known; additional risks known; unsafe; or unknown. Guidance was aimed at the oral use of PPIs and categorized by the severity of cirrhosis, using the Child-Turcotte-Pugh (CTP) classification. ResultsA total of 69 studies were included. Esomeprazole, omeprazole and rabeprazole were classified as having no additional risks known'. A reduction in maximum dose of omeprazole and rabeprazole is recommended for CTP A and B patients. For patients with CTP C cirrhosis, the only PPI advised is esomeprazole at a maximum dosage of 20mg per day. Pantoprazole and lansoprazole were classified as unsafe because of 4- to 8-fold increased exposure. The use of PPIs in cirrhotic patients has been associated with the development of infections and hepatic encephalopathy and should be carefully considered. ConclusionsWe suggest using esomeprazole, omeprazole or rabeprazole in patients with CTP A or B cirrhosis and only esomeprazole in patients with CTP C. Pharmacokinetic changes are also important to consider when prescribing PPIs to vulnerable, cirrhotic patients

    Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study

    Get PDF
    The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk.This work was supported by the Medical Research Council (G0901310) and the Wellcome Trust (grants 085475/B/08/Z, 085475/Z/08/Z). This study was supported by the NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London and by the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust at King’s College London. Further support to EB: Mental Health Research UK’s John Grace QC award, BMA Margaret Temple grants 2016 and 2006, MRC—Korean Health Industry Development Institute Partnering Award (MC_PC_16014), MRC New Investigator Award and a MRC Centenary Award (G0901310), National Institute of Health Research UK post-doctoral fellowship, the Psychiatry Research Trust, the Schizophrenia Research Fund, the Brain and Behaviour Research foundation’s NARSAD Young Investigator Awards 2005, 2008, Wellcome Trust Research Training Fellowship, the NIHR Biomedical Research Centre at UCLH, and the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry King’s College London. Further support to co-authors: The Brain and Behaviour Research foundation’s (NARSAD’s) Young Investigator Award (Grant 22604, awarded to CI). The BMA Margaret Temple grant 2016 to JT. A 2014 European Research Council Marie Curie award to A DĂ­ez-Revuelta. HI has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 747429. A Medical Research Council doctoral studentship to JH-S, IA-Z and AB. A Mental Health Research UK studentship to RM. VB is supported by a Wellcome Trust Seed Award in Science (200589/Z/16/Z). FWO Senior Clinical Fellowship to RvW. The infrastructure for the GROUP consortium is funded through the Geestkracht programme of the Dutch Health Research Council (ZON-MW, grant number 10-000-1001), and matching funds from participating pharmaceutical companies (Lundbeck, AstraZeneca, Eli Lilly, Janssen Cilag) and universities and mental health care organisations (Amsterdam: Academic Psychiatric Centre of the Academic Medical Centre and the mental health institutions: GGZ Ingeest, Arkin, Dijk en Duin, GGZ Rivierduinen, Erasmus Medical Centre, GGZ Noord Holland Noord. Groningen: University Medical Centre Groningen and the mental health institutions: Lentis, GGZ Friesland, GGZ Drenthe, Dimence, Mediant, GGNet Warnsveld, Yulius Dordrecht and Parnassia psycho-medical centre The Hague. Maastricht: Maastricht University Medical Centre and the mental health institutions: GGZ Eindhoven en De Kempen, GGZ Breburg, GGZ Oost-Brabant, Vincent van Gogh voor Geestelijke Gezondheid, Mondriaan, Virenze riagg, Zuyderland GGZ, MET ggz, Universitair Centrum Sint-Jozef Kortenberg, CAPRI University of Antwerp, PC Ziekeren Sint-Truiden, PZ Sancta Maria Sint-Truiden, GGZ Overpelt, OPZ Rekem. Utrecht: University Medical Centre Utrecht and the mental health institutions Altrecht, GGZ Centraal and Delta). The Santander cohort was supported by Instituto de Salud Carlos III (PI020499, PI050427, PI060507), SENY FundaciĂł (CI 2005-0308007), Fundacion RamĂłn Areces and Fundacion MarquĂ©s de Valdecilla (API07/011, API10/13). We thank Valdecilla Biobank for providing the biological PAFIP samples and associated data included in this study and for its help in the technical execution of this work; we also thank IDIVAL Neuroimaging Unit for its help in the acquisition and processing of imaging PAFIP data
    • 

    corecore