179 research outputs found

    Multiple equilibria and oscillatory modes in a mid-latitude ocean-forced atmospheric model

    Get PDF
    International audienceAtmospheric response to a mid-latitude sea surface temperature (SST) front is studied, while emphasizing low-frequency modes induced by the presence of such a front. An idealized atmospheric quasi-geostrophic (QG) model is forced by the SST field of an idealized oceanic QG model. First, the equilibria of the oceanic model and the associated SST fronts are computed. Next, these equilibria are used to force the atmospheric model and compute its equilibria when varying the strength of the oceanic forcing. Low-frequency modes of atmospheric variability are identified and associated with successive Hopf bifurcations. The origin of these Hopf bifurcations is studied in detail, and connected to barotropic instability. Finally, a link is established between the model's time integrations and the previously obtained equilibria. © Author(s) 2012

    Surf zone hazards and injuries on beaches in SW France

    Get PDF
    Surf zone injuries (SZIs) are common worldwide, yet limited data is available for many geographical regions, including Europe. This study provides the first preliminary overview of SZIs along approximately 230 km of hazardous surf beaches in SW France during the summer season. A total of 2523 SZIs over 186 sample days during the summers of 2007, 2009 and 2015 were analysed. Documented injury data included date and time; beach location; flag colour; outside/inside of the bathing zone; age, gender, country and home postal code of the victim; activity; cause of injury; injury type and severity. Injuries sustained ranged from mild contusion to fatal drowning, including severe spinal injuries, wounds and luxation. While the most severe injuries (drowning) were related to rip currents, a large number of SZIs occurred as a result of shore-break waves (44.6%; n = 1125) and surfing activity (31.0%; n = 783) primarily inside and outside of lifeguard patrolled bathing zones, respectively. Victims were primarily French living more than 40 km from the beach (75.9% of the reported addresses; n = 1729), although a substantial number of victims originated from Europe (14.7% of the addresses reported; n = 335), including The Netherlands (44.2%; n = 148), Germany (26.3%; n = 88) and Belgium (12.5%; n = 49). The predominant age group involved in the incidents was between 10-25 years (54.5%; n = 1376) followed by 35-50 years (22.6%; n = 570), with the majority of SZIs involving males (69.6%, n = 1617). Despite the large predominance (74.1%; n = 33) of males involved in the most severe drowning incidents, all of which occurred outside the bathing zone, a surprisingly large proportion of females (48.0%; n = 133) experienced milder drowning incidents involving only minor to moderate respiratory impairment, peaking at 58.2% (n = 85) within the age group 10-25. The spine/cervical injury population is very young, with 58.5% (n = 313) within the age group 10-20. Specific injuries tended to occur in clusters (e.g. rip current drowning or shore-break injury) with particular days prone to rip-current drowning or hazardous shore-break waves, suggesting the potential to predict level of risk to beachgoers based on basic weather and marine conditions. This study calls for increased social-based beach safety research in France and the development of more effective public awareness campaigns to highlight the surf zone hazards, even within a supervised bathing zone. These campaigns should be targeted towards young males and females, in order to reduce the number of injuries and drownings occurring on beaches in SW France.Marier les objectifs de défense côtière avec ceux de la protection du milieu naturel grâce aux dunes sableuse

    Nat. Hazards Earth Syst. Sci.

    Get PDF
    International audienceThe two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso-macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfingrelated SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs = 0.75-1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs > 1.25 m and mean wave periods longer than 5 s. Addi- tional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast

    Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide.

    Get PDF
    This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/jacs.5b03395Vanadium sulfide VS4 in the patronite mineral structure is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2](2-). (51)V NMR shows that the material, despite having V formally in the d(1) configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S(2-), via an internal redox process whereby an electron from V(4+) is transferred to [S2](2-) resulting in oxidation of V(4+) to V(5+) and reduction of the [S2](2-) to S(2-) to form Li3VS4 containing tetrahedral [VS4](3-) anions. On further lithiation this is followed by reduction of the V(5+) in Li3VS4 to form Li3+xVS4 (x = 0.5-1), a mixed valent V(4+)/V(5+) compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. The unusual redox processes in this system are elucidated using a suite of short-range characterization tools including (51)V nuclear magnetic resonance spectroscopy (NMR), S K-edge X-ray absorption near edge spectroscopy (XANES), and pair distribution function (PDF) analysis of X-ray data.SB acknowledges Schlumberger Stichting Fund and European Research Council (EU ERC) for funding. JC thanks BK21 plus project of Korea. We thank Phoebe Allan and Andrew J. Morris, University of Cambridge, for useful discussions. We also thank Trudy Bolin and Tianpin Wu of Beamline 9-BM, Argonne National Laboratory for help with XANES measurements. The DFT calculations were performed at the UCSB Center for Scientific Computing at UC Santa Barbara, supported by the California Nanosystems Institute (NSF CNS-0960316), Hewlett-Packard, and the Materials Research Laboratory (DMR-1121053). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

    Response of littoral chironomid community and organic matter to late glacial lake level and environmental changes at Lago dell'Accesa (Tuscany, Italy).

    No full text
    International audienceThis study focuses on the response of lacustrine littoral chironomid communities to late glacial changes in limnological, environmental and climate conditions in the Mediterranean context. Late glacial chironomid (Diptera: Chironomidae) assemblages, organic petrography and geochemistry were analysed in a sediment core from the littoral zone of Lago dell'Accesa (Tuscany, Italy), where the lake-level fluctuations and the vegetation history have been previously reconstructed. Comparison of the chironomid stratigraphy to other proxies (pollen assemblages, organic petrography and geochemistry, lake-level) and regional climate reconstruction suggested the predominant influence of lake-level changes on the littoral chironomid fauna. The main lowering events that occurred during the Oldest and the Younger Dryas were followed by higher proportions of taxa typical of littoral habitats. A complementary study of organic matter suggested the indirect impact of lake-level on the chironomids through changes in humic status and habitat characteristics, such as the type of substrate and aquatic macrophyte development. Several chironomid taxa, such as Glyptotendipes, Microtendipes and Cricotopus type patens, were identified as possible indicators of low lake-level in the late glacial records. Nevertheless, this study suggested that parallel analyses of organic matter and chironomid assemblages may be needed to circumvent misinterpretation of littoral chironomid assemblage stratigraphy. There was a weak response of the chironomid assemblages to small lake-level lowerings that corresponded to the Older Dryas and Preboreal oscillations. A higher level of determination, e.g. to the species group level, may be necessary to increase the sensibility of the indicators to lake-level changes

    Cellular Model of Warburg Effect Identifies Tumor Promoting Function of UCP2 in Breast Cancer and Its Suppression by Genipin

    Get PDF
    The Warburg Effect is characterized by an irreversible injury to mitochondrial oxidative phosphorylation (OXPHOS) and an increased rate of aerobic glycolysis. In this study, we utilized a breast epithelial cell line lacking mitochondrial DNA (rho0) that exhibits the Warburg Effect associated with breast cancer. We developed a MitoExpress array for rapid analysis of all known nuclear genes encoding the mitochondrial proteome. The gene-expression pattern was compared among a normal breast epithelial cell line, its rho0 derivative, breast cancer cell lines and primary breast tumors. Among several genes, our study revealed that over-expression of mitochondrial uncoupling protein UCP2 in rho0 breast epithelial cells reflects gene expression changes in breast cancer cell lines and in primary breast tumors. Furthermore, over-expression of UCP2 was also found in leukemia, ovarian, bladder, esophagus, testicular, colorectal, kidney, pancreatic, lung and prostate tumors. Ectopic expression of UCP2 in MCF7 breast cancer cells led to a decreased mitochondrial membrane potential and increased tumorigenic properties as measured by cell migration, in vitro invasion and anchorage independent growth. Consistent with in vitro studies, we demonstrate that UCP2 over-expression leads to development of tumors in vivo in an orthotopic model of breast cancer. Genipin, a plant derived small molecule, suppressed the UCP2 led tumorigenic properties, which were mediated by decreased reactive oxygen species and down-regulation of UCP2. However, UCP1, 3, 4 and 5 gene expression was unaffected. UCP2 transcription was controlled by SMAD4. Together, these studies suggest a tumor-promoting function of UCP2 in breast cancer. In summary, our studies demonstrate that i) the Warburg Effect is mediated by UCP2; ii) UCP2 is over-expressed in breast and many other cancers; iii) UCP2 promotes tumorigenic properties in vitro and in vivo and iv) genipin suppresses the tumor promoting function of UCP2

    Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient

    Get PDF
    In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms
    corecore