847 research outputs found

    Coulomb interaction effects on the electronic structure of radial polarized excitons in nanorings

    Full text link
    The electronic structure of radially polarized excitons in structured nanorings is analyzed, with emphasis in the ground-state properties and their dependence under applied magnetic fields perpendicular to the ring plane. The electron-hole Coulomb attraction has been treated rigorously, through numerical diagonalization of the full exciton Hamiltonian in the non-interacting electron-hole pairs basis. Depending on the relative weight of the kinetic energy and Coulomb contributions, the ground-state of polarized excitons has "extended" or "localized" features. In the first case, corresponding to small rings dominated by the kinetic energy, the ground-state shows Aharonov-Bohm (AB) oscillations due to the individual orbits of the building particles of the exciton. In the localized regime, corresponding to large rings dominated by the Coulomb interaction, the only remaining AB oscillations are due to the magnetic flux trapped between the electron and hole orbits. This dependence of the exciton, a neutral excitation, on the flux difference confirms this feature as a signature of Coulomb dominated polarized excitons. Analytical approximations are provided in both regimens, which accurate reproduce the numerical results.Comment: 9 pages, including 6 figure

    Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells.

    Get PDF
    With the increase of infections due to multidrug resistant bacterial pathogens and the shortage of antimicrobial molecules with novel targets, interest in bacteriophages as a therapeutic option has regained much attraction. Before the launch of future clinical trials, in vitro studies are required to better evaluate the efficacies and potential pitfalls of such therapies. Here we studied in an ex vivo human airway epithelial cell line model the efficacy of phage and ciprofloxacin alone and in combination to treat infection by Pseudomonas aeruginosa. The Calu-3 cell line and the isogenic CFTR knock down cell line (cftr-) infected apically with P. aeruginosa strain PAO1 showed a progressive reduction in transepithelial resistance during 24 h. Administration at 6 h p.i. of single phage, phage cocktails or ciprofloxacin alone prevented epithelial layer destruction at 24 h p.i. Bacterial regrowth, due to phage resistant mutants harboring mutations in LPS synthesis genes, occurred thereafter both in vitro and ex vivo. However, co-administration of two phages combined with ciprofloxacin efficiently prevented PAO1 regrowth and maintained epithelial cell integrity at 72 p.i. The phage/ciprofloxacin treatment did not induce an inflammatory response in the tested cell lines as determined by nanoString <sup>®</sup> gene expression analysis. We conclude that combination of phage and ciprofloxacin efficiently protects wild type and cftr- epithelial cells from infection by P. aeruginosa and emergence of phage resistant mutants without inducing an inflammatory response. Hence, phage-antibiotic combination should be a safe and promising anti-Pseudomonas therapy for future clinical trials potentially including cystic fibrosis patients

    The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling

    Full text link
    We investigate the effect that Rashba spin-orbit coupling has on the low energy behaviour of a two dimensional magnetic impurity system. It is shown that the Kondo effect, the screening of the magnetic impurity at temperatures T < T_K, is robust against such spin-orbit coupling, despite the fact that the spin of the conduction electrons is no longer a conserved quantity. A proposal is made for how the spin-orbit coupling may change the value of the Kondo temperature T_K in such systems and the prospects of measuring this change are discussed. We conclude that many of the assumptions made in our analysis invalidate our results as applied to recent experiments in semi-conductor quantum dots but may apply to measurements made with magnetic atoms placed on metallic surfaces.Comment: 22 pages, 1 figure; reference update

    Current-voltage characteristics of diluted Josephson-junction arrays: scaling behavior at current and percolation threshold

    Full text link
    Dynamical simulations and scaling arguments are used to study the current-voltage (IV) characteristics of a two-dimensional model of resistively shunted Josephson-junction arrays in presence of percolative disorder, at zero external field. Two different limits of the Josephson-coupling concentration pp are considered, where pcp_c is the percolation threshold. For pp >> pcp_c and zero temperature, the IV curves show power-law behavior above a disorder dependent critical current. The power-law behavior and critical exponents are consistent with a simple scaling analysis. At pcp_c and finite temperature TT, the results show the scaling behavior of a T=0 superconducting transition. The resistance is linear but vanishes for decreasing TT with an apparent exponential behavior. Crossover to non-linearity appears at currents proportional to % T^{1+\nu_T}, with a thermal-correlation length exponent νT\nu_T consistent with the corresponding value for the diluted XY model at pcp_c.Comment: Revtex, 9 postscript pages, to appear in Phys. Rev.

    New Route to Amide-Functionalized N-Donor Ligands Enables Improved Selective Solvent Extraction of Trivalent Actinides

    Get PDF
    A new general synthetic route to selective actinide extracting ligands for spent nuclear fuel reprocessing has been established. The amide-functionalized ligands separate Am(III) and Cm(III) from the lanthanides with high selectivities and show rapid rates of metal extraction. The ligands retain the advantages of the analogous unfunctionalized ligands derived from camphorquinone, whilst also negating their main drawback; precipitate formation when in contact with nitric acid. These studies could enable the design of improved solvent extraction processes for closing the nuclear fuel cycle
    corecore