research

Current-voltage characteristics of diluted Josephson-junction arrays: scaling behavior at current and percolation threshold

Abstract

Dynamical simulations and scaling arguments are used to study the current-voltage (IV) characteristics of a two-dimensional model of resistively shunted Josephson-junction arrays in presence of percolative disorder, at zero external field. Two different limits of the Josephson-coupling concentration pp are considered, where pcp_c is the percolation threshold. For pp >> pcp_c and zero temperature, the IV curves show power-law behavior above a disorder dependent critical current. The power-law behavior and critical exponents are consistent with a simple scaling analysis. At pcp_c and finite temperature TT, the results show the scaling behavior of a T=0 superconducting transition. The resistance is linear but vanishes for decreasing TT with an apparent exponential behavior. Crossover to non-linearity appears at currents proportional to % T^{1+\nu_T}, with a thermal-correlation length exponent νT\nu_T consistent with the corresponding value for the diluted XY model at pcp_c.Comment: Revtex, 9 postscript pages, to appear in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020