52 research outputs found
Environmental Drivers of Mesophotic Echinoderm Assemblages of the Southeastern Pacific Ocean
Mesophotic ecosystems (50â400 m depth) of the southeastern Pacific have rarely been studied because of the logistical challenges in sampling across this remote zone. This study assessed how oxygen concentrations and other environmental predictors explain variation in echinoderm assemblages at these mesophotic systems, where this group is among the predominant fauna. We compiled data on echinoderm taxa at 91 sampling stations, from historical and recent surveys (between 1950 and 2019), covering a longitudinal gradient of approximately 3,700 km along with the Nazca, Salas y GĂłmez, and Juan FernĂĄndez ridges. Uni- and multivariate model-based tools were applied to analyze the patterns of benthic fauna in relation to environmental factors. Our results indicate a significant positive relationship between echinoderm species richness and depth, oxygen, and salinity. Changes in echinoderm community composition were significantly explained by oxygen, longitude, and chlorophyll-a. We observed notable species turnovers at âŒ101 and âŒ86°W, where assemblages tend to be more variable across stations. This turnover possibly reflects the effects of physical barriers to dispersion (e.g., currents) and habitat changes. Echinoderm assemblages observed around Easter and Desventuradas Islands presented a high occurrence of potentially endemic taxa and distinct species assemblages. This study is the first to assess the structure of mesophotic echinoderm assemblages of the southeastern Pacific Ocean along a large spatial scale. The information reported here could help design appropriate management tools for the vast, recently created, marine protected areas in the southeastern Pacific
Plankton patchiness investigated using simultaneous nitrate and chlorophyll observations
The complex patterns observed in marine phytoplankton distributions arise from the interplay of biological and physical processes, but the nature of the balance remains uncertain centuries after the first observations. Previous observations have shown a consistent trend of decreasing variability with decreasing length-scale. Influenced by similar scaling found for the properties of the water that the phytoplankton inhabit, âuniversal' theories have been proposed that simultaneously explain the variability seen from meters to hundreds of kilometers. However, data on the distribution of phytoplankton alone has proved insufficient to differentiate between the many causal mechanisms that have been suggested. Here we present novel observations from a cruise in the North Atlantic in which fluorescence (proxy for phytoplankton), nitrate and temperature were measured simultaneously at scales from 10 m to 100 km for the first time in the open ocean. These show a change in spectra between the small scale (10â100 m) and the mesoscale (10â100 km) which is different for the three tracers. We discuss these observations in relation to the current theories for phytoplankton patchiness
An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions
Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100?km -1?km). The causes and consequences of physical processes at these scales (âeddy advectionâ) influencing biogeochemistry have received much attention. Less studied, the non-linear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed âeddy reactionsâ. Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modelling work has previously suggested that the neglected âeddy reactionsâ may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates, and not taken as a justification for ignoring eddy reactions. Compared to modelling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions
Plankton patchiness investigated using simultaneous nitrate and chlorophyll observations
The complex patterns observed in marine phytoplankton distributions arise from the interplay of biological and physical processes, but the nature of the balance remains uncertain centuries after the first observations. Previous observations have shown a consistent trend of decreasing variability with decreasing length-scale. Influenced by similar scaling found for the properties of the water that the phytoplankton inhabit, âuniversal' theories have been proposed that simultaneously explain the variability seen from meters to hundreds of kilometers. However, data on the distribution of phytoplankton alone has proved insufficient to differentiate between the many causal mechanisms that have been suggested. Here we present novel observations from a cruise in the North Atlantic in which fluorescence (proxy for phytoplankton), nitrate and temperature were measured simultaneously at scales from 10 m to 100 km for the first time in the open ocean. These show a change in spectra between the small scale (10â100 m) and the mesoscale (10â100 km) which is different for the three tracers. We discuss these observations in relation to the current theories for phytoplankton patchiness
In search for the sources of plastic marine litter that contaminates the Easter Island Ecoregion
Subtropical gyres are the oceanic regions where plastic litter accumulates over long timescales, exposing surrounding oceanic islands to plastic contamination, with potentially severe consequences on marine life. Islandsâ exposure to such contaminants, littered over long distances in marine or terrestrial habitats, is due to the ocean currents that can transport plastic over long ranges. Here, this issue is addressed for the Easter Island ecoregion (EIE). High-resolution ocean circulation models are used with a Lagrangian particle-tracking tool to identify the connectivity patterns of the EIE with industrial fishing areas and coastline regions of the Pacific basin. Connectivity patterns for âvirtualâ particles either floating (such as buoyant macroplastics) or neutrally-buoyant (smaller microplastics) are investigated. We find that the South American shoreline between 20°S and 40°S, and the fishing zone within international waters off Peru (20°S, 80°W) are associated with the highest probability for debris to reach the EIE, with transit times under 2 years. These regions coincide with the most-densely populated coastal region of Chile and the most-intensely fished region in the South Pacific. The findings offer potential for mitigating plastic contamination reaching the EIE through better upstream waste management. Results also highlight the need for international action plans on this important issue
Water mass analysis along 22°N in the subtropical North Atlantic for the JC150 cruise (GEOTRACES, GApr08)
This study presents a water mass analysis along the JC150 section in the subtropical North Atlantic, based on
hydrographic and nutrient data, by combining an extended optimum multiparameter analysis (OMPA) with a
Lagrangian particle tracking experiment (LPTE). This combination, which was proposed for the first time, aided
in better constraining the OMPA end-member choice and providing information about their trajectories. It also
enabled tracing the water mass origins in surface layers, which cannot be achieved with an OMPA. The surface
layers were occupied by a shallow type of Eastern South Atlantic Central Water (ESACW) with traces of the
Amazon plume in the west. Western North Atlantic Central Water dominates from 100 to 500 m, while the 13°C ESACW
contribution occurs marginally deeper (500â900 m). At approximately 700 m, Antarctic Intermediate
Water (AAIW) dominates the west of the Mid-Atlantic Ridge (MAR), while Mediterranean Water dominates the
east with a small but non-negligible contribution down to 3500 m. Below AAIW, Upper Circumpolar Deep Water
(UCDW) is observed throughout section (900â1250 m). Labrador Sea Water (LSW) is found centered at 1500 m,
where the LPTE highlights an eastern LSW route from the eastern North Atlantic to the eastern subtropical
Atlantic, which was not previously reported. North East Atlantic Deep Water (encompassing a contribution of
Iceland-Scotland Overflow Water) is centered at ~2500 m, while North West Atlantic Bottom Water (NWABW,
encompassing a contribution of Denmark Strait Overflow Water) is principally localized in the west of the MAR
in the range of 3500â5000 m. NWABW is also present in significant proportions (>25%) in the east of the MAR,
suggesting a crossing of the MAR possibly through the Kane fracture zone. This feature has not been investigated so far. Finally, Antarctic Bottom Water is present in deep waters throughout the section, mainly in the west of the MAR. Source waters have been characterized from GEOTRACES sections, which enables estimations of trace elements and isotope transport within water masses in the subtropical North Atlantic
Assessing the potential impact of assimilating total surface current velocities in the Met Officeâs global ocean forecasting system
Accurate prediction of ocean surface currents is important for marine safety, ship routing, tracking of pollutants and in coupled forecasting. Presently, velocity observations are not routinely assimilated in global ocean forecasting systems, largely due to the sparsity of the observation network. Several satellite missions are now being proposed with the capability to measure Total Surface Current Velocities (TSCV). If successful, these would substantially increase the coverage of ocean current observations and could improve accuracy of ocean current forecasts through data assimilation. In this paper, Observing System Simulation Experiments (OSSEs) are used to assess the impact of assimilating TSCV in the Met Officeâs global ocean forecasting system. Synthetic observations are generated from a high-resolution model run for all standard observation types (sea surface temperature, profiles of temperature and salinity, sea level anomaly and sea ice concentration) as well as TSCV observations from a Sea surface KInematics Multiscale monitoring (SKIM) like satellite. The assimilation of SKIM like TSCV observations is tested over an 11 month period. Preliminary experiments assimilating idealised single TSCV observations demonstrate that ageostrophic velocity corrections are not well retained in the model. We propose a method for improving ageostrophic currents through TSCV assimilation by initialising Near Inertial Oscillations with a rotated incremental analysis update (IAU) scheme. The OSSEs show that TSCV assimilation has the potential to significantly improve the prediction of velocities, particularly in the Western Boundary Currents, Antarctic Circumpolar Current and in the near surface equatorial currents. For global surface velocity the analysis root-mean-square-errors (RMSEs) are reduced by 23% and there is a 4-day gain in forecast RMSE. There are some degradations to the subsurface in the tropics, generally in regions with complex vertical salinity structures. However, outside of the tropics, improvements are seen to velocities throughout the water column. Globally there are also improvements to temperature and sea surface height when TSCV are assimilated. The TSCV assimilation largely corrects the geostrophic ocean currents, but results using the rotated IAU method show that the energy at inertial frequencies can be improved with this method. Overall, the experiments demonstrate significant potential benefit of assimilating TSCV observations in a global ocean forecasting system
The impact of simulated total surface current velocity observations on operational ocean forecasting and requirements for future satellite missions
Operational forecasts rely on accurate and timely observations and it is important that the ocean forecasting community demonstrates the impact of those observations to the observing community and its funders while providing feedback on requirements for the design of the ocean observing system. One way in which impact of new observations can be assessed is through Observing System Simulation Experiments (OSSEs). Various satellite missions are being proposed to measure Total Surface Current Velocities (TSCV). This study uses OSSEs to assess the potential impact of assimilating TSCV observations. OSSEs have been performed using two global ocean forecasting systems; the Met Officeâs (MetO) Forecasting Ocean Assimilation Model and the Mercator Ocean International (MOI) system. Developments to the individual systems, the design of the experiments and results have been described in two companion papers. This paper provides an intercomparison of the OSSEs results from the two systems. We show that global near surface velocity analysis root-mean-squared-errors (RMSE) are reduced by 20-30% and 10-15% in the MetO and MOI systems respectively, we also demonstrate that the percentage of particles forecast to be within 50 km of the true particle locations after drifting for 6 days has increased by 9%/7%. Furthermore, we show that the global subsurface velocities are improved down to 1500m in the MetO system and down to 400m in the MOI system. There are some regions where TSCV assimilation degrades the results, notably the middle of the gyres in the MetO system and at depth in the MOI system. Further tuning of the background and observation error covariances are required to improve performance in these regions. We also provide some recommendations on TSCV observation requirements for future satellite missions. We recommend that at least 80% of the ocean surface is observed in less than 4 to 5 days with a horizontal resolution of 20 to 50 km. Observations should be provided within one day of measurement time to allow real time assimilation and should have an accuracy of 10 cm/s in the along and across track direction and uncertainty estimates should be provided with each measurement
An MBO scheme for minimizing the graph Ohta-Kawasaki functional
We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph based problems inspired by partial differential equations (PDEs) and varational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph based problems to pattern forming models, while continuing in the tradition of recent papers in the field.
We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Î-converge to the Ohta-Kawasaki functional (which includes the standard graph based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint
A sustainable blue economy may not be possible in Tanzania without cutting emissions.
Balancing blue growth with the conservation of wild species and habitats is a key challenge for global ocean management. This is exacerbated in Global South nations, such as Tanzania, where climate-driven ocean change requires delicate marine spatial planning (MSP) trade-offs to ensure climate resilience of marine resources relied upon by coastal communities. Here, we identified challenges and opportunities that climate change presents to the near-term spatial management of Tanzania's artisanal fishing sector, marine protected areas and seaweed farming. Specifically, spatial meta-analysis of climate modelling for the region was carried out to estimate the natural distribution of climate resilience in the marine resources that support these socially important sectors. We estimated changes within the next 20 and 40Â years, using modelling projections forced under global emissions trajectories, as well as a wealth of GIS and habitat suitability data derived from globally distributed programmes. Multi-decadal analyses indicated that long-term climate change trends and extreme weather present important challenges to the activity of these sectors, locally and regionally. Only in few instances did we identify areas exhibiting climate resilience and opportunities for sectoral expansion. Including these climate change refugia and bright spots in effective ocean management strategies may serve as nature-based solutions: promoting adaptive capacity in some of Tanzania's most vulnerable economic sectors; creating wage-gaining opportunities that promote gender parity; and delivering some economic benefits of a thriving ocean where possible. Without curbs in global emissions, however, a bleak future may emerge for globally valuable biodiversity hosted in Tanzania, and for its coastal communities, despite the expansion of protected areas or curbs in other pressures. Growing a sustainable ocean economy in this part of the Global South remains a substantial challenge without global decarbonization
- âŠ