1,126 research outputs found

    eBank UK: linking research data, scholarly communication and learning

    No full text
    This paper includes an overview of the changing landscape of scholarly communication and describes outcomes from the innovative eBank UK project, which seeks to build links from e-research through to e-learning. As introduction, the scholarly knowledge cycle is described and the role of digital repositories and aggregator services in linking data-sets from Grid-enabled projects to e-prints through to peer-reviewed articles as resources in portals and Learning Management Systems, are assessed. The development outcomes from the eBank UK project are presented including the distributed information architecture, requirements for common ontologies, data models, metadata schema, open linking technologies, provenance and workflows. Some emerging challenges for the future are presented in conclusion

    CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?

    Full text link
    We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa

    Dust Stratification in Young Circumstellar Disks

    Get PDF
    We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S, RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO, and C18O as well as broad emission lines of gas phase12CO. The narrow absorption lines of CO are shown to originate from the colder circumstellar gas. We find that the line of sight gas column densities resulting from the CO absorption lines are much higher than expected for the measured extinction for each source and suggest the gas to dust ratio is measuring the dust settling and/or grain coagulation in these extended disks. We provide a model of turbulence, dust settling and grain growth to explain the results. The techniques presented here allow us to provide some observationally-motivated bounds on accretion disk alpha in protostellar systems

    Knockout of ERK5 causes multiple defects in placental and embryonic development

    Get PDF
    BACKGROUD: ERK5 is a member of the mitogen activated protein kinase family activated by certain mitogenic or stressful stimuli in cells, but whose physiological role is largely unclear. RESULTS: To help determine the function of ERK5 we have used gene targeting to inactivate this gene in mice. Here we report that ERK5 knockout mice die at approximately E10.5. In situ hybridisation for ERK5, and its upstream activator MKK5, showed strong expression in the head and trunk of the embryo at this stage of development. Between E9.5 and E10.5, multiple developmental problems are seen in the ERK5-/- embryos, including an increase in apoptosis in the cephalic mesenchyme tissue, abnormalities in the hind gut, as well as problems in vascular remodelling, cardiac development and placental defects. CONCLUSION: Erk5 is essential for early embryonic development, and is required for normal development of the vascular system and cell survival

    Turbulence in Global Simulations of Magnetized Thin Accretion Disks

    Full text link
    We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio H/R0.07H / R \simeq 0.07, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport >2.5×102 > \approx 2.5 \times 10^{-2}. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of 2.5H2.5H and 1.5H1.5H respectively), and generally consistent with that expected from homogenous incompressible turbulence. The density field, conversely, exhibits both a longer correlation length and a long correlation time, results which we ascribe to the importance of spiral density waves within the flow. Consistent with prior results, we show that the mean local stress displays a well-defined correlation with the local vertical flux, and that this relation is apparently causal (in the sense of the flux stimulating the stress) during portions of a global dynamo cycle. We argue that the observed flux-stress relation supports dynamo models in which the structure of coronal magnetic fields plays a central role in determining the dynamics of thin-disk accretion.Comment: 24 pages and 25 figures. MNRAS in press. Version with high resolution figures available from http://jila.colorado.edu/~krb3u/Thin_Disk/thin_disk_turbulence.pd

    High Resolution K-band Spectroscopy of MWC 480 and V1331 Cyg

    Full text link
    We present high resolution (R=25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess.Comment: 29 pages, 5 figures, to appear in Ap

    A novel 3D volumetric method for directly quantifying porosity and pore space morphology in flocculated suspended sediments

    Get PDF
    Flocculated suspended sediments (flocs) are found in a variety of environments globally, and their transport and behavior bear substantial importance to several industries including fisheries, aquaculture, and shipping. Additionally, the modelling of their behavior is important for estuarine and coastal flood prediction and defence, and the process of flocculation occurs in other unrelated industries such as paper and chemical production. Floc porosity is conventionally assessed using inferential indirect or proxy data approaches. These methods underestimate floc porosity % by c. 30% and cannot measure the micro-scale complexity of these pore spaces and networks, rendering inputs to models sub-optimal. This study introduces a novel 3D porosity and pore space quantification protocol, that produces directly quantified porosity % and pore space data. • 3D floc data from micro-CT scanning is segmented volumetrically. • This segmented volume is quantified to extract porosity and several pore space parameters from the floc structure
    corecore