79 research outputs found

    К вопросу об актуальности изучения иностранных языков в современном обществе

    Get PDF
    Introduction Microvascular changes in the skin due to pharmacological and physiological provocations can be used as a marker for vascular function. While laser Doppler flowmetry (LDF) has been used extensively for measurement of skin microvascular responses, Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi) are novel imaging techniques. TiVi measures red blood cell concentration, while LDF and LSCI measure perfusion. Therefore, the aim of this study was to compare responses to provocations in the skin using these different techniques. Method Changes in skin microcirculation were measured in healthy subjects during (1) iontophoresis of sodium nitroprusside (SNP) and noradrenaline (NA), (2) local heating and (3) post-occlusive reactive hyperemia (PORH) using LDF, LSCI and TiVi. Results Iontophoresis of SNP increased perfusion (LSCI: baseline 40.9 +/- 6.2 PU; 10-min 100 +/- 25 PU; pless than0.001) and RBC concentration (TiVi: baseline 119 +/- 18; 10-min 150 +/- 41 AU; p = 0.011). No change in perfusion (LSCI) was observed after iontophoresis of NA (baseline 38.0 +/- 4.4 PU; 10-min 38.9 +/- 5.0 PU; p = 0.64), while RBC concentration decreased (TiVi: baseline 59.6 +/- 11.8 AU; 10-min 54.4 +/- 13.3 AU; p = 0.021). Local heating increased perfusion (LDF: baseline 8.8 +/- 3.6 PU; max 112 +/- 55 PU; pless than0.001, LSCI: baseline 50.8 +/- 8.0 PU; max 151 +/- 22 PU; pless than0.001) and RBC concentration (TiVi: baseline 49.2 +/- 32.9 AU; max 99.3 +/- 28.3 AU; pless than0.001). After 5 minutes of forearm occlusion with prior exsanguination, a decrease was seen in perfusion (LDF: p = 0.027; LSCI: pless than0.001) and in RBC concentration (p = 0.045). Only LSCI showed a significant decrease in perfusion after 5 minutes of occlusion without prior exsanguination (pless than0.001). Coefficients of variation were lower for LSCI and TiVi compared to LDF for most responses. Conclusion LSCI is more sensitive than TiVi for measuring microvascular changes during SNP-induced vasodilatation and forearm occlusion. TiVi is more sensitive to noradrenaline-induced vasoconstriction. LSCI and TiVi show lower inter-subject variability than LDF. These findings are important to consider when choosing measurement techniques for studying skin microvascular responses

    Anaplastic Thyroid Carcinoma: A Therapeutic Dilemma

    Get PDF
    Anaplastic thyroid carcinoma (ATC) is one of the most malignant human neoplasms and has a grave prognosis. This study gives an update on our experience with this unusual neoplasm, with specific focus on the response to various treatment modalities. Forty-seven patients with histologically proven ATCs were enrolled (19 men, 28 women; mean age, 62.8 years). This number represents 1.5% among a total of 3,088 thyroid cancers treated between 1977 and 2002. The mean tumor diameter was 8.8 cm, and 22 patients had distant metastasis. Extrathyroidal extension was seen in 26 (89.7%) of the cases that underwent surgery. Treatment modalities adopted could be classified into 5 groups: Group 1, biopsy only; Group 2, biopsy and chemoradiotherapy; Group 3, debulking only; Goup 4, debulking and chemoradiotherapy; Group 5, complete excision and chemoradiotherapy. Survival was calculated from the time of diagnosis, and comparisons of survival were done by log-rank analysis. The mean survival was 4.3 months (range, 1.0-21 months). The mean survival based on treatment modalities were as follows: Group 1 (n = 10), 2.1 months, Group 2 (n = 8); 3.6 months; Group 3 (n = 7), 3.0 months; Group 4 (n = 14), 3.5 months, Group 5 (n = 8), 9.4 months. There was no significant difference in survival time between the various types of treatment modalities. Even though a small improvement in survival was observed with complete excision and aggressive multimodality therapy, nearly all ATCs remain unresponsive to ongoing treatment modalities and as such, present a therapeutic dilemma. A more effective treatment regimen should be sought in order to improve survival

    On microvascular blood flow assessment with the new microdialysis urea clearance technique

    No full text
    The aim of this thesis was to develop and evaluate a new way of monitoring blood flow with microdialysis. A thin catheter consisting of a semipermeable membrane is implanted in the tissue being studied. The catheter is perfused by a solution that closely resembles interstitial fluid, and small water-soluble substances are allowed to diffuse passively through the pores of the membrane with the aim at reaching equilibrium with the surrounding tissue.  The minimally invasive character of microdialysis, and its ability to sample from the organ being studied, make microdialysis attractive in most research settings as well as for clinical surveillance. It has, however, become increasingly evident that microdialysis under conditions of non-equilibrium - for example, fluctuating regional blood flow, will alter the results gained. We have therefore aimed to explore the possibilities of developing a new marker of blood flow that will yield information about changes in blood flow that occur in the area of the microdialysis catheter itself. We hypothesised that the changes in the diffusion of exogenous urea could be used as markers of changes in tissue blood flow. The theoretical basis for this approach is that the mass transfer of urea will increase across the dialysis membrane secondary to increased blood flow. As removal of urea from the vicinity of the dialysis membrane increases with increased blood flow, the concentration gradient of urea between the perfusate and tissue will also increase. This in turn will result in a greater loss of urea from the perfusate. The changes noted in retrieval of urea from dialysate by the system are therefore thought to be inversely related to changes in blood flow. We tested our hypothesis in two species of animal (rat and pig) and in man, and in three organ systems (muscle, liver, and skin), and present four papers that indicate that the urea clearance technique provides reliable and reproducible results. The technique was evaluated against conventional metabolic markers (lactate and glucose), the ethanol clearance technique (microdialysis), laser Doppler perfusion imaging (LDPI), and polarisation light spectroscopy (TiVi). We present evidence that the urea clearance technique can be used to assess blood flow in the organs studied reliably and reproducibly with microdialysis. The microdialysis technique is minimally invasive and safe for the recipient, and catheters can easily be implanted during operation to monitor organs at risk. Urea is easily analysed as a standard assay among other “basic” metabolic markers (in a standard microdialysis kit) and has favourable characteristics with a standardised measurement system that is routinely used for monitoring metabolites in the clinic. The technique is also effective when used at lower perfusate flow rates (<1 μl/minute), which is advantageous as the recovery of metabolic markers increases at low perfusate flow rates

    Objective assessment of skin microcirculation using a smartphone camera

    No full text
    Background Existing techniques for assessment of microcirculation are limited by their large size and high costs and are often not so easy to use. Advances in mobile technology have enabled great improvements in smartphone sensor technology. In this study, we used SkinSight, an app for iPhone and iPad, to measure changes in skin microcirculation during physiological provocations. The system estimates changes in the concentration of hemoglobin in the skin by analyzing the reflected light emitted from the built-in light-emitting diode and detected by the camera of the smartphone. Methods A relative hemoglobin (Hb) index was measured during a 5-min arterial occlusion, post-occlusive reactive hyperemia, and a 5-min venous occlusion in 10 healthy subjects, on two separate days. The index was calculated in an area of the skin from the color information in the images acquired by the phone camera. Polarized light spectroscopy imaging was used to measure changes in red blood cell concentration for comparison. Results During arterial occlusion, relative Hb index was unchanged compared to baseline (P= .40). After release of the cuff, a sudden 60%-75% increase in Hb index was observed (P&amp;lt; .001) followed by a gradual return to baseline. During venous occlusion, Hb index increased by 80% (P&amp;lt; .001) followed by a gradual decrease to baseline after reperfusion. Day-to-day reproducibility of the relative Hb index was excellent (ICC: 0.92, r = 0.94), although relative Hb index was consistently higher during the second day, possibly as a result of changed lighting conditions or calibration issues. Conclusion Microvascular responses to physiological provocations in the skin can be accurately and reproducibly measured using a smartphone application. Although the system offers a handheld, easy to use and flexible technique for skin microvascular assessment, the effects of lighting on the measured values and need for calibration need to be further investigated.Funding Agencies|County Council of Ostergotland, Sweden</p

    Incidence of distal ulna fractures in a Swedish county: 74/100,000 person-years, most of them treated non-operatively

    No full text
    Background and purpose - Fractures of the distal ulna can occur in isolation or in conjunction with a distal radius fracture. They may result in incongruence and instability of the distal radioulnar joint. We investigated the incidence of distal ulna fractures, whether any fracture types were more common, and the methods of treatment used. Patients and methods - Data were collected from patients 18 years or older, treated for a fracture of the distal ulna in ostergotland, Sweden, during 2010-2012. Patients were identified in the patient registry. The fractures were classified according to the AO comprehensive classification of fractures. Results - The incidence of distal ulna fractures was 74/100,000 person-years. The most common fracture type was that of the ulnar styloid Q1 (79%), followed by the ulnar neck Q2 (11%). Rarest was ulna head fracture, type Q4 (1%). Incidental findings were a mean age of 63 years (SD 18), a concomitant distal radius fracture in 92% of the patients and that 79% were caused by falling from standing height. Internal fixation was performed in 30% of the Q2-Q6 fractures. This indicates that most were considered stable without internal fixation or stable after fixation of a concomitant radius fracture. Interpretation - Our results show that fractures of the distal ulna are not very common, and some fracture types are even rare. There seem to be no consensus on treatment

    The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model

    No full text
    Background: We evaluated the use of laser speckle contrast imaging (LSCI) in the perioperative planning in reconstructive flap surgery. The aim of the study was to investigate whether LSCI can predict regions with a high risk of developing postoperative necrosis. Our hypothesis was that, perioperatively, such regions have perfusion values below a threshold value and show a negative perfusion trend. Methods: A porcine flap model based on the cranial gluteal artery perforator was used. Images were acquired before surgery, immediately after surgery (t = 0), after 30 min (t =30 min), and after 72h (t = 72 h). Regions of interest (ROIs) were chosen along the central axis of the flap. Clinical evaluation of the flap was made during each time point. Results: At t = 72 h, a demarcation line could be seen at a distance of 15.8 +/- 0.4 cm away from the proximal border of the flaps. At t =0, perfusion decreased gradually from the proximal to the distal ROI. At t =30 min, perfusion was significantly lower in the ROI distal to the final demarcation line than that at t = 0, and in all flaps, these ROIs had a perfusion amp;lt;25 PU. At t= 72 h, perfusion in the ROI proximal to this line returned to baseline levels, whereas perfusion in the distal ROI remained low. Conclusions: In our model, a decrease in perfusion during the first 30 min after surgery and a perfusion amp;lt;25 PU at t = 30 min was a predictor for tissue morbidity 72 h after surgery, which indicates that LSCI is a promising technique for perioperative monitoring in reconstructive flap surgery. (C) 2018 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.Funding Agencies|County of Ostergotland</p
    corecore