1,083 research outputs found

    Recent developments in X-ray diffraction/scattering computed tomography for materials science

    Get PDF
    X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'

    Marburg hemorrhagic fever in Durba and Watsa, Democratic Republic of the Congo: clinical documentation, features of illness, and treatment

    Get PDF
    The objective of the present study was to describe day of onset and duration of symptoms of Marburg hemorrhagic fever (MHF), to summarize the treatments applied, and to assess the quality of clinical documentation. Surveillance and clinical records of 77 patients with MHF cases were reviewed. Initial symptoms included fever, headache, general pain, nausea, vomiting, and anorexia (median day of onset, day 1-2), followed by hemorrhagic manifestations (day 5-8+), and terminal symptoms included confusion, agitation, coma, anuria, and shock. Treatment in isolation wards was acceptable, but the quality of clinical documentation was unsatisfactory. Improved clinical documentation is necessary for a basic evaluation of supportive treatment

    Aggregation and Representation in the European Parliament Party Groups

    Get PDF
    While members of the European Parliament are elected in national constituencies, their votes are determined by the aggregation of MEPs in multinational party groups. The uncoordinated aggregation of national party programmes in multinational EP party groups challenges theories of representation based on national parties and parliaments. This article provides a theoretical means of understanding representation by linking the aggregation of dozens of national party programmes in different EP party groups to the aggregation of groups to produce the parliamentary majority needed to enact policies. Drawing on an original data source of national party programmes, the EU Profiler, the article shows that the EP majorities created by aggregating MEP votes in party groups are best explained by cartel theories. These give priority to strengthening the EP’s collective capacity to enact policies rather than voting in accord with the programmes they were nationally elected to represent

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Clinical, pathological and functional characterization of riboflavin-responsive neuropathy.

    Get PDF
    Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    The antiproton decelerator (AD), a simplified antiproton source (feasibility study)

    Get PDF
    In view of a possible future physics programme concerning antihydrogen a simplified scheme for the provision of antiprotons of a few MeV has been studied. It uses the present target area and the modified Antiproton Collector (AC) in its present location. In this report all the systems are reviewed and their modifications discussed

    An Antiproton Decelerator in the CERN PS Complex

    Get PDF
    The present CERN PS low-energy antiproton complex involves 4 machines to collect, cool, decelerate and supply experiments with up to 1010 antiprotons per pulse and per hour of momenta ranging from 0.1 to 2 GeV/c. In view of a possible future physics programme requiring low energy antiprotons, mainly to carry out studies on antihydrogen, a simplified scheme providing at low cost antiprotons at 100 MeV/c has been studied. It requires only one machine, the present Antiproton Collector (AC) converted into a cooler and decelerator (Antiproton Decelerator, AD) and delivering beam to experiments in the hall of the present Antiproton Accumulator Complex (AAC) [1]. This paper describes the feasibility study of such a scheme [2]
    • 

    corecore