627 research outputs found

    Introduction: preliminary reflections on the legacy of Pierre Bourdieu

    Get PDF
    Book synopsis: Pierre Bourdieu is widely regarded as one of the most influential sociologists of his generation, and yet the reception of his work in different cultural contexts and academic disciplines has been varied and uneven. This volume maps out the legacy of Pierre Bourdieu in contemporary social and political thought from the standpoint of classical European sociology and from the broader perspective of transatlantic social science. It brings together contributions from prominent scholars in the field, providing a range of perspectives on the continuing relevance of Bourdieu’s oeuvre to substantive problems in social and political analysis

    General relativity as an effective field theory: The leading quantum corrections

    Get PDF
    I describe the treatment of gravity as a quantum effective field theory. This allows a natural separation of the (known) low energy quantum effects from the (unknown) high energy contributions. Within this framework, gravity is a well behaved quantum field theory at ordinary energies. In studying the class of quantum corrections at low energy, the dominant effects at large distance can be isolated, as these are due to the propagation of the massless particles (including gravitons) of the theory and are manifested in the nonlocal/nonanalytic contributions to vertex functions and propagators. These leading quantum corrections are parameter-free and represent necessary consequences of quantum gravity. The methodology is illustrated by a calculation of the leading quantum corrections to the gravitational interaction of two heavy masses.Comment: 34 pages, Latex, UMHEP-40

    Synthesis and characterization of atomically-thin graphite films on a silicon carbide substrate

    Full text link
    This paper reports the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one graphene layer. The growth and characterization were carried out in ultrahigh vacuum (UHV) conditions. The growth process and sample quality were monitored by low-energy electron diffraction, and the thickness of the sample was determined by core level x-ray photoelectron spectroscopy. High-resolution angle-resolved photoemission spectroscopy shows constant energy map patterns, which are very sharp and fully momentum-resolved, but nonetheless not resolution limited. We discuss the implications of this observation in connection with scanning electron microscopy data, as well as with previous studies

    Identification of potential signature whistles from free-ranging common dolphins (Delphinus delphis) in South Africa

    Get PDF
    Conveying identity is important for social animals to maintain individually based relationships. Communication of identity information relies on both signal encoding and perception. Several delphinid species use individually distinctive signature whistles to transmit identity information, best described for the common bottlenose dolphin (Tursiops truncatus). In this study, we investigate signature whistle use in wild common dolphins (Delphinus delphis). Acoustic recordings were analysed from 11 encounters from three locations in South Africa (Hout Bay, False Bay, and Plettenberg Bay) during 2009, 2016 and 2017. The frequency contours of whistles were visually categorised, with 29 signature whistle types (SWTs) identified through contour categorisation and a bout analysis approach developed specifically to identify signature whistles in bottlenose dolphins (SIGID). Categorisation verification was conducted using an unsupervised neural network (ARTwarp) at both a 91% and 96% vigilance parameter. For this, individual SWTs were analysed type by type and then in a ‘global’ analysis whereby all 497 whistle contours were categorised simultaneously. Overall the analysis demonstrated high stereotypy in the structure and temporal production of whistles, consistent with signature whistle use. We suggest that individual identity information may be encoded in these whistle contours. However, the large group sizes and high degree of vocal activity characteristic of this dolphin species generate a cluttered acoustic environment with high potential for masking from conspecific vocalisations. Therefore, further investigation into the mechanisms of identity perception in such acoustically cluttered environments is required to demonstrate the function of these stereotyped whistle types in common dolphins.This research (2014–2018) was supported by Sea Search Research and Conservation NPO and Grant 93689 to Simon Elwen from the South African National Research Foundation. For the data collected in Plettenberg Bay in 2009, funding was provided by the Russel Trust.http://link.springer.com/journal/100712020-06-08hj2019Mammal Research InstituteZoology and Entomolog

    Black Hole Entropy is Noether Charge

    Full text link
    We consider a general, classical theory of gravity in nn dimensions, arising from a diffeomorphism invariant Lagrangian. In any such theory, to each vector field, Οa\xi^a, on spacetime one can associate a local symmetry and, hence, a Noether current (n−1)(n-1)-form, j{\bf j}, and (for solutions to the field equations) a Noether charge (n−2)(n-2)-form, Q{\bf Q}. Assuming only that the theory admits stationary black hole solutions with a bifurcate Killing horizon, and that the canonical mass and angular momentum of solutions are well defined at infinity, we show that the first law of black hole mechanics always holds for perturbations to nearby stationary black hole solutions. The quantity playing the role of black hole entropy in this formula is simply 2π2 \pi times the integral over ÎŁ\Sigma of the Noether charge (n−2)(n-2)-form associated with the horizon Killing field, normalized so as to have unit surface gravity. Furthermore, we show that this black hole entropy always is given by a local geometrical expression on the horizon of the black hole. We thereby obtain a natural candidate for the entropy of a dynamical black hole in a general theory of gravity. Our results show that the validity of the ``second law" of black hole mechanics in dynamical evolution from an initially stationary black hole to a final stationary state is equivalent to the positivity of a total Noether flux, and thus may be intimately related to the positive energy properties of the theory. The relationship between the derivation of our formula for black hole entropy and the derivation via ``Euclidean methods" also is explained.Comment: 16 pages, EFI 93-4

    Null Brane Intersections

    Get PDF
    We study pairs of planar D-branes intersecting on null hypersurfaces, and other related configurations. These are supersymmetric and have finite energy density. They provide open-string analogues of the parabolic orbifold and null-fluxbrane backgrounds for closed superstrings. We derive the spectrum of open strings, showing in particular that if the D-branes are shifted in a spectator dimension so that they do not intersect, the open strings joining them have no asymptotic states. As a result, a single non-BPS excitation can in this case catalyze a condensation of massless modes, changing significantly the underlying supersymmetric vacuum state. We argue that a similar phenomenon can modify the null cosmological singularity of the time-dependent orbifolds. This is a stringy mechanism, distinct from black-hole formation and other strong gravitational instabilities, and one that should dominate at weak string coupling. A by-product of our analysis is a new understanding of the appearance of 1/4 BPS threshold bound states, at special points in the moduli space of toroidally-compactified type-II string theory.Comment: Tex file, uses harvmac, 24 pages with 5 figures. Corrected typos and added references. Final version to appear in JHE

    Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate

    Get PDF
    Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry

    Light scattering observations of spin reversal excitations in the fractional quantum Hall regime

    Full text link
    Resonant inelastic light scattering experiments access the low lying excitations of electron liquids in the fractional quantum Hall regime in the range 2/5≄Μ≄1/32/5 \geq \nu \geq 1/3. Modes associated with changes in the charge and spin degrees of freedom are measured. Spectra of spin reversed excitations at filling factor Îœâ‰ł1/3\nu \gtrsim 1/3 and at Îœâ‰Č2/5\nu \lesssim 2/5 identify a structure of lowest spin-split Landau levels of composite fermions that is similar to that of electrons. Observations of spin wave excitations enable determinations of energies required to reverse spin. The spin reversal energies obtained from the spectra illustrate the significant residual interactions of composite fermions. At Îœ=1/3\nu = 1/3 energies of spin reversal modes are larger but relatively close to spin conserving excitations that are linked to activated transport. Predictions of composite fermion theory are in good quantitative agreement with experimental results.Comment: Submitted to special issue of Solid State Com
    • 

    corecore