150 research outputs found

    Harmonic response of the organ of corti: results for wave dispersion

    Get PDF
    Inner ear is a remarkable multiphysical system and its modelling is a great challenge. The approach used in this paper aims to reproduce physic with a realistic description of the radial cross section of the cochlea. A 2D‐section of the organ of Corti is fully described. Wavenumbers and corresponding modes of propagation are calculated taking into account passive structural responses. The study is extended to six cross sections of the organ of Corti and a large frequency bandwidth from 100 Hz to 3 kHz. Dispersion curves reveal the influence of fluid structure interactions with a dispersive behavior at high frequencies. Longitudinal mechanical coupling provides new interacting modes of propagation

    Upset Dynamics of an Airliner Model: A Nonlinear Bifurcation Analysis

    Get PDF

    Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    Get PDF
    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel–Kramers–Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plateŚłs thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves

    The influence of isoinertial-pneumatic ratio on force-velocity-power relationships

    Full text link
    Introduction: Isoinertial contractions are effective to generate maximal force during the initiation of the movement whereas they do not provide an appropriate training stimulus to generate force once accelerative phase has been developed (1). Pneumatic resistance is one alternative that has been developed to overcome the aforementioned limitations associated with isoinertial contractions. This technique allow higher initial velocity and reduce the decrease of force towards the end of the concentric phase (1). There is some training interest by combining isoinertial and pneumatic loading. The aim of this study was to determine how different isoinertial-pneumatic ratio influence the force-velocity-power relationships during bench-press. Methods: Fifteen participants performed bench press at 30%, 45%, 60%, 75%, and 90% of their 1RM, with five isoinertial(I)-pneumatic(P) resistance ratio : 100%I/0%P, 75%I/25%P, 50%I/50%P, 25%I/75%P, and 0%I/100%P. Velocity, force and power were assessed using a linear transducer and mechanical parameters measured by the pneumatic ergometer. Force-, velocity- and power-time patterns were averaged over the push-off phase to build the corresponding force-velocity and power-velocity relationships for each resistance ratio. Results: The increase in pneumatic part in resistance ratio elicited higher movement velocity and lower force level from 0% to 80% of the concentric phase. The increase in isoinertial part in resistance balance resulted in higher velocity towards the end of the movement. As a consequence, the use of isoinertial resistance oriented the force-velocity relationship towards force, whereas pneumatic resistance elicited a more velocity-oriented profile. Conclusion: Pneumatic-oriented resistance could be used to develop initial velocity and force towards the end of the push-off. Isoinertial-oriented resistance should be used to develop maximal force and maximal power. Resistance modality could be modulated according to training objectives. Références : 1. Frost et al. A comparison of the kinematics, kinetics and muscle activity between pneumatic and free weight resistance. Eur J Appl Physiol. 2008;104:937-56

    Deep Neural Network Discrimination of Multiplexed Superconducting Qubit States

    Full text link
    Demonstrating a quantum computational advantage will require high-fidelity control and readout of multi-qubit systems. As system size increases, multiplexed qubit readout becomes a practical necessity to limit the growth of resource overhead. Many contemporary qubit-state discriminators presume single-qubit operating conditions or require considerable computational effort, limiting their potential extensibility. Here, we present multi-qubit readout using neural networks as state discriminators. We compare our approach to contemporary methods employed on a quantum device with five superconducting qubits and frequency-multiplexed readout. We find that fully-connected feedforward neural networks increase the qubit-state-assignment fidelity for our system. Relative to contemporary discriminators, the assignment error rate is reduced by up to 25% due to the compensation of system-dependent nonidealities such as readout crosstalk which is reduced by up to one order of magnitude. Our work demonstrates a potentially extensible building block for high-fidelity readout relevant to both near-term devices and future fault-tolerant systems.Comment: 18 Pages, 9 figure

    BrAPI-an application programming interface for plant breeding applications

    Get PDF
    Motivation: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. Results: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin
    • 

    corecore