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Despite the significant improvement in safety linked to the fourth generation of

airliners, the risk of encountering upset conditions remains an important consideration.

Upset — which may arise from faults, external events or inappropriate pilot inputs

— can induce a loss-of-control incident if the pilot does not respond in the correct

manner. Any initiative aimed at preventing such events requires an understanding

of the fundamental aircraft behaviour. This paper presents the use of bifurcation

analysis, complemented by time-history simulations, to understand the flight dynamics

of the open loop NASA Generic Transport Model by identifying the attractors of the

dynamical system that govern upset behaviour. A number of drivers for potential

upset conditions have been identified, including non-oscillatory spirals and oscillatory

spins. The analysis shows that these spirals and spins are connected in two-parameter

space and that, by an inappropriate pilot reaction to the spiral, it is possible to enter

the oscillatory spin.
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Nomenclature

alt = vertical displacement

c.g. = centre of gravity

Cl = body axis rolling moment coefficient coefficient

Clp
= rolling moment coefficient due to roll rate

Cm = body axis pitching moment coefficient

Cn = body axis yawing moment coefficient

Cnp
= yawing moment coefficient due to roll rate

CX = x body axis force coefficient

CY = y body axis force coefficient (side force)

CYp
= side force coefficient due to roll rate

CZ = z body axis force coefficient

f = generic nonlinear function

lat = latitudinal displacement

lon = longitudinal displacement

p = x body axis roll rate

q = y body axis pitch rate

r = z body axis yaw rate

u = x body axis velocity

V = total velocity

v = y body axis velocity

w = z body axis velocity

X = x body axis force

x = state vector

Y = y body axis side force

Z = z body axis force
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α = angle of attack

β = angle of sideslip

δa = aileron deflection

δe = elevator deflection

δr = rudder deflection

δt = throttle setting

θ = pitch angle

λ = vector of parameters

φ = roll angle

ψ = yaw angle

I. Introduction

The introduction of the fourth generation of airliners has brought a significant improvement

in flight safety [1]. However, the risk of encountering upset conditions remains an important con-

sideration. Upset may arise in non-protected aircraft and, potentially, in flight envelope protected

aircraft if protection is lost due to faults, external events or inappropriate pilot inputs. This can

induce a loss of control event, currently the leading cause of commercial aviation fatalities [2], if

the pilot’s actions are not effective to recover the upset condition. The activity receiving most at-

tention in attempting to reduce upset events is improved pilot training [3]; other initiatives include

fully protected aircraft [4], prediction of upset to improve pilot awareness [5], and automation (from

assisted [4] to fully automated [6]) to allow for easier recovery. Whichever solution is being studied,

it is important to understand the fundamental aircraft behaviour in these highly nonlinear flight

regimes.

In addition to the underlying nonlinear dynamics, upset and upset recovery are also linked to

control law characteristics, including envelope protection functions. Today on Airbus aircraft, for

example, in the nominal situation (‘normal laws’) the flight envelope is protected so that abnormal

attitudes cannot be reached as a consequence of any of the atmospheric disturbances which have

been recorded. However, for very low probability cases combining system fault events (that lead
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to a decrease in control law performance) and unusual external perturbations, or in the case of

an extraordinary unpredictable external event (e.g. impact damage), the flight parameters may

go beyond the limits of the protected envelope. In this case, specific control laws are activated to

ensure aircraft recovery. These abnormal attitude control laws essentially consist of direct control

on the pitch, roll and yaw axis with very basic and robust stability augmentation in the yaw case.

The pilot can then apply classical upset recovery procedures; see for example Ref. [7].

A major objective of the next generation of fly-by-wire aircraft is to further increase safety

whilst also improving handling qualities. One potential improvement is to provide the pilot with a

higher level of automation even in extreme events, either by introducing advanced manual control

laws or by fully automating the recovering procedures (as is already done for some military aircraft

[8]). To do so, models and methods for validation and clearance of those new functions are required.

Upset prevention and recovery training is an important tool for reducing loss of control events

and will become compulsory for US carriers in 2013 [3]. The industry-developed Upset Recovery

Training Aid [7] is the most well known document outlining a training programme on upset recovery

through piloted simulations. The programme gives pilots knowledge of upset conditions and of basic

recovery procedures, practised on full flight simulators, although this document has not yet been

widely implemented. The International Committee for Aviation Training in Extended Envelopes

(ICATEE) [9] and the Simulation of Upset Recovery in Aviation (SUPRA) [10] programmes also

focus their upset prevention and recovery work on piloted simulations. However, the majority of full

flight simulators lack the necessary expanded aerodynamic envelope data [11]. Currently, recovery

procedure training would require extrapolation of the aerodynamic data from the normal operating

envelope and this may result in significant errors and even the mis-modelling of key features of the

dynamic response.

Identifying all potential upset scenarios will help to develop the most efficient training approach,

which would not be practical by the use of full flight simulators alone. Hence, analytical methods are

required to complement the techniques developed for flight simulation. The NASA Aviation Safety

Program was created to explore systems associated with the Next Generation Air Transportation

System in order to help assure safety. Included in this programme was the development of the
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Generic Transport Model (GTM) in order to look at real in-flight upset dynamics and control

without the risk attributed to the use of a full scale aircraft; the GTM is a 5.5% dynamically scaled

aircraft [12]. Extensive wind tunnel tests were performed on the GTM airframe [11] to create an

expanded-envelope aerodynamic data set for use in development of a Matlab Simulink model. It

allows the development of control laws that can be implemented in real time on the GTM in-flight

model. Much of the GTM research has been on the development of controllers [13, 14] to help prevent

upset scenarios and for implementing into the Aircraft Integrated Resilient Safety Assurance and

Failsafe Enhancement (AIRSAFE) concept, where resilient control is integrated with flight safety

assessment and management; an overview is given in Ref. [15]. However, as research into design

of upset controllers is typically not based directly on physical links to the causes of upset and the

underlying flight dynamics, these controllers may not work for all possible upset scenarios.

It is the purpose of this paper to provide an improved understanding of the nonlinear flight

mechanics that occurs under high angle of attack conditions. To that end, a bifurcation analysis

of the GTM, complemented by time-history simulations, is presented. Full bifurcation analysis

of civil airliner flight dynamics models is not common practice, although the same approach has

been successfully applied to open loop military aircraft models [16–20] and to augmented aircraft

dynamics [21–24]. An overview of flight dynamics applications can be found in [25–27]. Bifurcation

analysis has already been applied to the GTM in [28, 29]; where a rigorous assessment of the ability

to control and regulate an aircraft around bifurcations is provided, with a focus on loss-of-control;

the controllability and observability of a closed-loop GTM model is studied, leading to the definition

of safe sets in which the aircraft can be positively controlled. This is an important contribution

to the topic of upset control relating to bifurcations, including consideration of capacity to recover

from upset in the presence failures; it does not attempt to build a comprehensive description of the

open-loop flight dynamics in terms of both oscillatory and fixed-point steady states. In Ref. [30],

bifurcation analysis was used to classify the different types of behaviour of the open-loop GTM;

both elevator and throttle variations were considered, however no specific upset scenarios were

discussed. Using these bifurcation diagrams a sequential upset recovery strategy was developed in

[31]. Jung [32] implemented bifurcation analysis methods on the VELA1 blended wing body airliner
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model and, while it did facilitate a greater understanding of the aircraft’s flight dynamics, it was

principally concerned with using control allocation methods to improve handling. While some spin

equilibrium solutions were identified, the aerodynamic data was limited to angles of attack of less

than 25◦. Bifurcation analysis was implemented on the extended envelope version of the SUPRA

model [33]. Variation of the flight dynamics in multi-parameter space was investigated; however,

as only equilibrium solutions were computed, the existence of other upset attractors, for example

periodic orbits, was not addressed.

Murch [34, 35] identified post-stall and spin dynamic modes of the GTM. These spin tests were

aimed primarily at discovery of the most accurate forced-oscillation and rotary balance blending

function for use in the GTM Simulink model. For this, pro-spin rudder inputs of up to δr =

±30◦ were used, while other control parameters were zero or at the maximum physical deflection.

Therefore, Refs. [34, 35] did not address why the GTM departs into spins and how the characteristics

of the spins change as parameters are varied.

Bifurcation analysis is an appropriate method to determine insight into the overall behaviour

of the model as it finds and then tracks different types of solutions throughout a parameter range;

moreover, the different bifurcations can then be tracked in multi-dimensional parameter space. In

this paper, as part of recent initiatives to apply this technique to the open-loop GTM behaviour

[30, 31, 36], we present the application of bifurcation analysis to an eighth-order version of the

NASA GTM to build an understanding of the underlying flight mechanics. The work identifies

possible upset scenarios and, moreover, provides a deeper insight into the complex interactions

that govern upset. This can then be focused on problems such as upset prediction and design of

prevention/recovery strategies.

II. Bifurcation and Continuation Analysis

Bifurcation and continuation analysis methods are based on the principles of dynamical systems

theory; see, for example, Ref. [37, 38] as entry points to the literature. Solutions are found, and

then tracked or continued numerically throughout a chosen parameter range in order to generate

bifurcation diagrams, which highlight qualitative changes in the system’s dynamic response.
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A. Bifurcation theory

Bifurcation analysis is applied here to an autonomous dynamical system of the general form

ẋ = f(x,λ), (1)

where f is a set of n nonlinear differentiable functions, x ∈ R
n is the state vector and λ ∈ R

m is a

vector of m parameters.

In aircraft open-loop flight dynamics, f would typically consist of the eighth-order rigid-body

equations of motion, see for example Ref. [39] with x = [α, β, V, p, q, r, φ, θ]; λ may include the

control surface inputs (aileron, elevator, rudder, thrust) and/or other parameters, such as centre

of gravity location. In numerical bifurcation analysis loci of steady-state solutions are mapped

out over a specified range of values of one or more of the parameters, such as elevator deflection;

these parameters are referred to as the continuation parameter(s). A one-parameter bifurcation

diagram of equilibria (stationary solutions) is generated by setting ẋ = f(x,λ) = 0 and solving

the resulting system of equations. Similar continuation (or path-following) methods can be used for

finding branches of periodic solutions. Selected state components, xi, i = 1, ..., n are then plotted

with respect to the continuation parameter. From these diagrams and using bifurcation theory,

bifurcations of the system dynamics can be located and characterised. Various types of bifurcations

may arise as parameter values vary, details of which are given in textbooks such as Ref. [37].

Bifurcation theory requires that the model is sufficiently smooth in x and λ.

A bifurcation is defined as a qualitative change in the system dynamics as a parameter is varied.

Mathematically, a bifurcation of an equilibrium occurs when an eigenvalue of the Jacobian matrix

Df =
df

dx
of the system, evaluated at the equilibrium, crosses the imaginary axis. Similarly, for

an oscillatory solution, when a Floquet multiplier crosses the unit circle there is a bifurcation of a

periodic orbit. In the results presented here, five types of bifurcations are discussed; they are all

of codimension one, meaning that they are encountered when a single continuation parameter is

varied.

• A saddle node or limit point or fold bifurcation of equilibria occurs when a real eigenvalue of

the Jacobian matrix, evaluated at the equilibrium, crosses the imaginary axis. On one side of

7



the bifurcation point (locally) there are no equilibria and on the other side there are two (for

example, one stable and the other unstable).

• A Hopf bifurcation occurs when a complex pair of eigenvalues of the Jacobian matrix, evaluated

at the equilibrium, crosses the imaginary axis. Here, the equilibrium changes stability and a

periodic orbit is created, which may be either stable or unstable.

• A limit point or fold bifurcation of periodic orbits, which arise when a real Floquet multiplier

crosses the unit circle at +1; as for equilibria, on one side of the bifurcation (locally) there are

no periodic orbits and on the other there are two.

• A period-doubling bifurcation occurs when a real Floquet multiplier crosses the unit circle at

−1. The periodic orbit loses stability while a new periodic orbit with (approximately) twice

the period is born.

• A Neimark-Sacker or torus bifurcation is where a periodic orbit loses stability when a pair of

complex Floquet multipliers crosses the unit circle and an additional frequency of oscillation

is introduced. The result is dynamics on a torus, which may be either periodic (locked) or

quasi-periodic.

Numerical continuation methods constitute a set of powerful tools to determine the information

necessary to carry out bifurcation analysis. More specifically, they use a predictor-corrector tech-

nique to find and then follow or continue curves of equilibria or periodic orbits of the differential

equation as roots of an appropriately defined system of algebraic equations. Stability information

is computed from eigenvalues of the Jacobian matrix for equilibria and from Floquet multipliers for

periodic orbits; bifurcations can be detected and also followed as parameters vary.

B. Continuation software AUTO and the Dynamical Systems Toolbox

A number of continuation software packages are available; this study uses AUTO [40], which is

coded in FORTRAN. The package AUTO has been developed in the academic context, where it is

widely used. The original version was developed in the 1980’s with the latest version, AUTO07P,

released in 2007. It has been applied to various aircraft dynamic problems, such as the analysis of
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Table 1 Notation as used in the figures.

Stable equilibrium Hopf bifurcation

Unstable equilibrium Torus bifurcation

Stable periodic orbit Period doubling bifurcation

Unstable periodic orbit

ground dynamics [41], landing gear shimmy [42], landing gear mechanisms [43] and, in addition, to

flight dynamics [25] and control [44].

AUTO has the capability, when applied to autonomous dynamical systems, to trace out station-

ary solutions from an initial starting point to map out the equilibria of the system (ẋ = f(x,λ) = 0).

While doing this, it is able to detect and label bifurcation points. AUTO also allows the continua-

tion of periodic solutions from Hopf bifurcations or a known starting solution, which allows for the

analysis of periodic oscillations. AUTO detects saddle node bifurcations of equilibria, Hopf, saddle

node bifurcations of periodic orbits, torus and period-doubling bifurcations, and it can trace the

loci of such bifurcation points in two parameters to create a two-parameter bifurcation diagram.

In this study, the version of AUTO incorporated into the Matlab Dynamical Systems Toolbox,

developed by Coetzee et al. [45], was used. This version of AUTO runs the FORTRAN code from

the Matlab environment. It uses object orientated coding to set up the problem and then connects

to AUTO07P through .mex files. Although computationally more expensive than AUTO07P alone,

the use of the Dynamical Systems Toolbox facilitates the setting up of the system in a Matlab or

Simulink formulation with access to the associated functions and tools. In the bifurcation diagrams

presented here, we use AUTO to depict the stable/unstable equilibria, stable/unstable periodic

orbits and bifurcations using the notation given in Table 1.

As is common in numerical bifurcation analysis, we ensured the accuracy of the computations

by comparing results with increasingly stringent settings for the tolerances, step size parameters and

convergence criteria in the AUTO package; see Ref. [40] for more details. In particular, we ensured

convergence to the solution in question to tolerances EPSL = 1e-006 and EPSU = 1e-006 within ITNW

= 5 corrector steps; moreover, periodic orbits were discretised with NCOL = 4 collocation points on

between NTST = 50 and NTST = 100 mesh intervals.
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III. The NASA Generic Transport Model (GTM)

The model used for this research is the Simulink representation of the NASA Generic Transport

Model (GTM). Importantly, its wide aerodynamic envelope allows nonlinear analysis at the high

angles of attack associated with upset.

A. Description of the GTM

The GTM is a 5.5% dynamically scaled civil transport aircraft, which was developed for NASA’s

Aviation Safety Program [12]. The physical UAV is used for the in-flight analysis of control laws

and upset scenarios without the risk associated with using a full scale aircraft. The results pre-

sented here are from the Simulink model known as the ‘DesignSim’. It implements the nonlinear

6 degree-of-freedom equations of motion for rigid aircraft in atmospheric flight with state vector

[u, v, w, p, q, r, lat, lon, alt, φ, θ, ψ]. These equations are defined in, for example, Ref. [39]. The lat,

lon and alt states are calculated as angular variables which can then be converted to geographic

translations relative to an origin on the earth’s surface. Aerodynamic data was taken from extensive

wind tunnel tests of the airframe. This gives a flight envelope of −5◦ ≤ α ≤ 85◦ angle of attack and

−45◦ ≤ β ≤ 45◦ angle of sideslip [11]. The aerodynamic data is made up of static and dynamic coef-

ficients in the form of linearly interpolated data tables. Each of the aerodynamic coefficients for the

three forces (CX , CY , CZ) and three moments (Cl, Cm, Cn) comprises the following contributions:

• static aerodynamic force/moment for zero control surface deflections as functions of α and β;

• additional force/moment components from deflecting each of the relevant control surfaces, as

function of α, β and the deflection angle;

• aerodynamic damping force/moment for each relevant angular velocity, obtained from forced

oscillation tests and given as a function of α and the specific angular rate;

• additional dynamic effects arising from steady state rotation in rotary balance tests, as a

function of α, β and the rotation rate.

The rotation rates required for the two dynamic contributions (from rotary balance and forced

oscillation data) are obtained from p, q and r using the hybrid Kalviste method [34]. The data tables
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are in general nonlinear functions of the given state and control variables. Further nonlinearity exists

in the inertial terms, the gravitational acceleration components, and through kinematic coupling.

To infer any full scale behaviour, corrections would be required, for example to the aerodynamic

coefficients to account for the Reynolds number mismatch. Also, the throttle position, based on the

GTM thrust model, is not correlated to full scale as the GTM’s thrust to weight ratio is larger than

that of a typical airliner. Note that the DesignSim model is not intended to represent a full-scale

aircraft: the data was generated for the sub-scale vehicle for the Reynolds numbers at which it was

tested, and the modeling uncertainties — which are potentially larger at higher incidences than in

the conventional flight envelope — are not quantified.

B. Implementation of the GTM

The Simulink based model was connected to AUTO within the Dynamical Systems Toolbox [45].

The linear interpolation of tabular aerodynamic data resulted in an insufficiently smooth system

for numerical continuation and a number of alternative interpolation methods were investigated.

Ultimately, the Simulink interpolation n-D block running cubic spline interpolation was implemented

as it creates smooth data and was quicker to set up than, for example, fitting multivariate orthogonal

functions [46]. No unacceptable overfitting was observed in these spline representations of the data

tables.

For analysis of flight mechanics, the [u, v, w] body axes states used in the GTM DesignSim

equations of motion are not as intuitive as the wind axes velocities [α, β, V ]. These states are

calculated in the GTM as auxiliary variables, but, when periodic orbits are computed, the minimum

and maximum values of [α, β, V ] are not readily available. Therefore, in our implementation, the

translational equations of motion were rewritten directly in wind axes form using expressions taken

from [47].

For the bifurcation analysis presented here, the GTM is reduced to an eighth-order model.

To implement this eighth-order model, the feedbacks of the unused states [lat, lon, alt, ψ] were

terminated and replaced by constant values (the initial conditions). This results in the reduced

system with state vector [α, β, V, p, q, r, φ, θ]. With this modification the model still captures the
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full dynamics of the system in body axes, except that, since altitude is fixed, the influence on the

aerodynamic loads of varying air density is neglected. However, this effect is negligible in terms

of the time scale associated with stability and control studies. For generating flight trajectories of

the GTM in the earth axes, the full twelfth-order system is used (with lat and lon the translations

relative to the position at t = 0). Furthermore, the actuators dynamics were not considered in the

computations since this has no effect on open-loop solutions: at each of the continuation run points

the control surface deflections were fixed. This reduced the complexity of the model, thus allowing

a faster runtime.

IV. Bifurcation analysis of the GTM aircraft

The results presented in this section are for the eighth-order open loop representation of the

NASA GTM aircraft (referred to here as GTM_8ol) with state vector [α, β, V, p, q, r, φ, θ] and centre

of gravity at the nominal location of 24% mean aerodynamic chord. The starting point of the

continuation was calculated using the trim function supplied with the GTM at α = 3◦ and flight

path horizontal, where V = 47.34 m/s and alt = 243m (800ft). This gave initial state and control

parameter vectors of:

x =

[

α β V p q r φ θ

]T

=

[

3◦ 0◦ 47.34m/s 0◦ 0◦ 0◦ 0.01◦ 3◦

]T

λ =

[

δa δe δr δt

]T

=

[

−0.004◦ 2.58◦ 0.009◦ 22.05%

]T

The trim aileron and rudder were non-zero due to the asymmetry in the aerodynamics and the

alignment of the engines. The aerodynamic asymmetry was observed in the wind tunnel data upon

which the model is built. Its source is not well understood: Ref. [11] suggests that it may arise from

wing stall or flow fields emanating from the forebody. There is ongoing research to establish whether

wing stall is the probable cause for roll asymmetry [48]. The very small difference in alignment angles

between the two engines was incorporated into the engine model on the basis of measurements from

the 5.5% scale flight vehicle. However, that aileron and rudder deflections are very small indicates

that at α = 3◦ the asymmetry is also small. To initiate the study, the elevator deflection angle, δe,

was the chosen continuation parameter, so as to emulate the pilot pulling back or pushing forward

on the stick with constant throttle, while not altering the ailerons and rudder. The continuation
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was run in both positive and negative directions from the initial point of δe = 2.58◦ and the results

were computed beyond the physical elevator limits of −30◦ ≤ δe ≤ 20◦ to be able to detect steady

state solutions that leave and re-enter the realistic parameter range.

Figure 1 shows a one-parameter bifurcation diagram in δe for the states α and p showing

equilibrium solutions only. The insets in panels (a) and (b) show respective enlargements of the

bifurcation diagram for small negative δe. Figure 2 builds on this information by including the

periodic solutions. In Figs. 1 and 2 the solutions lie in two distinct regions: the first at low to

medium angles of attack (α ≈ −5◦ to 25◦) and the second at higher angles of attack (α ≈ 30◦ to

42◦). In these two regions we classify the different types of dynamics into seven regimes, labelled

A—G and denoted in table 2. The regions are linked outside the physical limits of the elevator and

were located by applying the continuation algorithm well beyond the realistic parameter range. The

behaviour in each of these two regions is now discussed individually; subsequently in section V we

present how these two branches are connected within the physical elevator range by using rudder

deflection, δr, as the continuation parameter.

Table 2 Dynamic regimes.

Symbol Type of Dynamics α range

A Stable trimmed symmetric flight −2
◦ to 8

◦

B Low frequency oscillations 2.2◦ to 21
◦

C Steady steep spiral 10.5◦ to 20.9◦

D Inverted spiral −5
◦ to −2

◦

E Steady steep spin 30.5◦ to 38.8◦

F Period-one oscillatory steep spin 32.7◦ to 38.5◦

G Period-three oscillatory steep spin 30.8◦ to 40
◦

A. Low α behaviour

At the starting point of the continuation run (α = 3◦), GTM_8ol exhibits stable symmetric

flight. As the elevator deflection decreases (i.e. the pilot pulls back on the stick), angle of attack

initially increases with roll rate remaining at zero. This dynamic regime, labelled A in the α range
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of −2◦ to 8◦ in Fig. 1, can be considered as the normal trimmed symmetric flight condition. As the

elevator deflection decreases past δe ≈ −1◦, where α ≈ 8◦, GTM_8ol enters the regime of dynamics

labelled B where predominantly longitudinal oscillations exist, which can be related to an unstable

phugoid mode. These longitudinal oscillations arise from the Hopf bifurcations which exist in B.

Within this segment, as elevator deflection decreases further through δe ≈ −1.3◦ and α = 9◦ the

spiral mode loses stability, leading to a bifurcation from the near-symmetric stable solution such that

two strongly non-symmetric branches of equilibrium solutions appear; at angles of attack beyond

this point, the spiral mode is unstable on the near-symmetric branch. Note that this coincides with

the aerodynamic derivatives CYp
and Cnp

changing sign; see Fig. 3. At angles of attack slightly

beyond the onset of asymmetry, Hopf bifurcations occur; these are triggered by changes in stability

of the phugoid mode although the resulting oscillations involve coupled longitudinal and lateral-

directional motions. The period of these orbits is long (≈ 30s for the subscale aircraft) and time

histories have shown that these orbits are weak attractors. Hence the oscillations in regime B cannot

be considered as upset scenarios and are not discussed further here. More detail on this flight regime

of the GTM can be found in [36].

The asymmetry grows as elevator deflection is further decreased and at δe ≈ −4◦ the aircraft

enters regime C where large magnitude roll departure is experienced; see Fig. 1b. Stable equilibrium
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Fig. 4 Trajectory of the ‘steep spiral’ of regime C, for δe = −30
◦.

branches exist to both sides of the straight and level equilibrium, although, as the aerodynamics

are asymmetric, GTM_8ol is ‘likely’ to depart to the left, i.e. with negative p. This results from

the equilibrium branch representing departure to the left being connected to A through B (see

magnified views in Fig. 1). The equilibrium branch representing departure to the right is actually

disconnected from A and reaches a limit point bifurcation where the solution folds back, becoming

the unstable equilibrium where p ≈ 0◦/s. (We remark that if GTM_8ol were perfectly symmetric

then it would ‘prefer’ neither side and any lateral instability of the zero p branch would arise at

what is known as a pitchfork bifurcation [37].) Whether the aircraft spiral develops to the left or the

right will in practice depend on the nature of the disturbance and/or transient dynamics. As shown

in Fig. 1 these equilibrium branches of dynamic regime C do not converge on the straight and level
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flight branch within the physical elevator range; hence, GTM_8ol will stay on one of the two spiral

branches up to and including full aft column at δe = −30◦. Regime C represents stable steady-state

equilibria in the bifurcation diagram in Figs. 1 and 2. Fig. 4 is a trajectory plot from the full

twelfth-order model time history; note that in this and subsequent trajectory plots, the aircraft is

depicted approximately to scale with respect to latitude and longitude. The trajectory shows that

regime C represents undesirable steep helical spirals. These steep spirals can be considered as upset

conditions, although as can be inferred from Fig. 1, GTM_8ol can be recovered easily by reducing

angle of attack to below that at which the spiral branches arise, which may be achieved by simply

pushing forward on the stick. This matches the advice for stall recovery given in [7]. The ability

to find and quantify branches like the steep spirals highlights the advantage of continuation and

bifurcation analysis over linear methods, which would find the change of stability but would not

easily find the stable spiral branches.

A slight lateral instability exists at low angles of attack (α ≤ 0◦), labelled D in Figs. 1 and

2. For this constant-thrust bifurcation diagram, the flight velocity peaks at unrealistically high

values at small negative angles of attack, accompanied by increasingly negative pitch angle, until

the aircraft is in fact inverted. Thus, although regime D may be considered an inverted spiral, it is

not representative of realistic conditions and is hence not considered further here.

B. High α behaviour

At higher angles of attack, in the range 30◦ < α < 40◦ in Fig. 1 and 2, additional solutions

exist. First of all, there are branches of equilibria that span −30◦ < δe < 1◦ for positive roll rate

and −30◦ < δe < 8◦ for negative roll rate. All these negative roll rates are unstable, whilst there

is a considerable region of stable equilibria with positive roll rates. These differences arise from the

asymmetries in the model: the fundamental changes in inertial and aerodynamic force balance in

the left- and right-hand spins have not been identified but it is evident that they do affect the nature

of the resulting spin branches — including their local stability — just as they do at lower α. These

stable equilibria correspond to steady spins which we refer to as dynamic regime E. (Note that there

is also a tiny region of stable spins near δe = 1◦ but this is not of practical relevance.) Observation
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Fig. 5 Time history of the period-one oscillatory spin of regime F for δe = −24
◦, showing time

traces of: α, β, V , p, q and r (panels a1—a6). Panels (b) and (c) show the periodic orbit in

the (β,α) and (φ,θ)-planes, respectively.

of time history responses in the region of regime E showed that it has a small region of attraction;

thus this steep spin equilibrium branch does not play a significant role in the upset dynamics for

the chosen c.g./throttle setting. Although in the range 30◦ < α < 40◦ the majority of equilibria are

unstable and do not in themselves provide a steady spin, these solutions may influence responses

in this region and this has the potential to cause chaotic behaviour. Importantly there exist three

Hopf bifurcations in the valid parameter region, at δe = 0.47◦, δe = 8.26◦ and δe = −22.2◦; all

occur at α > 30◦. Continuation of the periodic orbits from the Hopf bifurcations at δe = −22.2◦
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Fig. 6 Trajectory of the period-one oscillatory spin of regime F for δe = −24
◦.

and 0.47◦ show them to be unstable throughout the valid parameter range. Of more significance

is the continuation of the periodic orbit from the Hopf bifurcation at δe = 8.26◦, which is initially

unstable but then bifurcates to a stable periodic orbit via a torus bifurcation at δe = −17.9◦. The

stable periodic orbit in regime F in Fig. 2 is significant as here the average angle of attack is α ≈ 35◦

with high magnitude roll and yaw rates. This periodic orbit is shown in the time history and phase

portrait plots for δe = 24◦ in Fig. 5. These dynamics in regime F may be regarded as an oscillatory

steep spin with a flight path angle of γ ≈ −89◦. The trajectory plot of this periodic orbit, in Fig. 6,

shows this oscillatory spin to be much tighter than that of the steep spiral in Fig. 4. The oscillatory

spins shown for the GTM in Ref. [34] also had an average angle of attack of approximately 35◦:

although non-zero rudder and aileron deflections were used in [34], it is typically angle of attack
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that dominates aerodynamic nonlinearity so that this similarity is not unexpected. Figure 2 shows

that this spin mode does exist at δa ≈ δr ≈ 0 and δt = 22.05%.
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Fig. 7 Time history of the period-three oscillatory spin of regime G for δe = −24
◦, showing

time traces of: α, β, V , p, q and r (panels a1—a6). Panels (b) and (c) show the periodic orbit

in the (β,α) and (φ,θ)-planes, respectively.

A second stable periodic orbit was also identified in the high angle of attack region; see regime

G in Fig. 2. This solution exists on an ‘isola’ (a closed curve that is not connected to the other

bifurcation curves); it was discovered by running a time history beyond the torus bifurcation on

the orbit of regime F at δe = −17.9◦. At this point this periodic orbit is no longer stable and the

GTM_8ol is attracted to the periodic orbit of regime G. Figure 7 shows that regime G represents
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Fig. 8 Trajectory of the period-three oscillatory spin of regime G for δe = −24
◦.

a more violent oscillation than that in regime F. Specifically, Fig. 7 shows that it is a period-three

periodic orbit, indicated by the fact that it has three amplitude maxima and minima. The trajectory

plot of a time history of this period-three orbit in Fig. 8 shows that it also constitutes a very tight

spin mode.

The comparison of the ground-tracks of the steep spiral, the period-one periodic orbit and the

period-three periodic orbit in Fig. 9 shows that there is a substantial difference in these trajectories

in both scale and complexity. The steep spiral in Fig. 9a is a perfect circle, as this is a steady

state solution of the eighth-order system defined in body axes coordinates; therefore, although

it is spiralling, this solution has constant angular rates and angular displacement relative to the

trajectory so that the radius of the spiral in the latitude-longitude plane is constant. The two
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◦ (a), the period-one periodic

orbit of regime F for δe = −24
◦ (b), and the period-three periodic orbit of regime G for δe = −24

◦

(c).

periodic orbits, however, do not have constant angular rates and, therefore, the radius of the spin

also oscillates. In the earth axis these appear as oscillating helices; see Figs. 6—8. The extent of

the ‘wander’ of the ground-track differs depending on the nature of the oscillatory solution, as the

wander depends on the change of the radius during one period of the periodic orbit. The period-one

periodic orbit of regime F in Fig. 9b shows little wander, however, the period-three orbit of regime

G in Fig. 9c exhibits far more noticeable wander. As these limit cycles both lose stability at torus

bifurcations it can be seen from Fig. 2 that by reducing elevator deflection beyond these torus points

and towards regime A the GTM will recover to straight and level flight as no other stable attractors

exist in the high angle of attack region. This procedure is the same as that given for recovery from

the steep spiral in section IVA although care must be taken that the transient responce of the

recovery would not cause structural damage to the airframe. An example of this recovery is given

in Fig. 11 of [36].

V. Transition from spiral to spin solutions

As mentioned in section IV, in elevator deflection alone the spiral and spin modes are only

connected outside the physical elevator range, inferring that only a large external perturbation

might transfer the GTM from the steep spiral to the oscillatory spins of regimes F and G. However,

these solutions may still be connected within the physical δe range when other parameters vary. To

investigate this, rudder deflection δr is selected as the continuation parameter and elevator deflection
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kept at a constant δe = −30◦, while aileron and throttle are retained at their original trim values.

Figure 10 shows the α and p projections of this one-parameter bifurcation diagram. At δr =

0.009◦, the solutions on the dotted line are the same solutions as shown at the left-hand boundary

of Fig. 2 where δe = −30◦ (here c represents the solution on regime C, fmin and fmax are the

minimum and maximum values of the orbit on regime F). The two stable equilibria at α ≈ 21◦ are

the steep spiral equilibria of regime C, and the stable periodic orbit at 32 ≤ α ≤ 39◦ is the periodic

orbit of regime F. We note that the steep spiral and oscillatory spin solutions are indeed connected

within the physical rudder deflection limits for δe = −30◦. More specifically, Fig. 10 shows that,

once rudder deflection is taken beyond δr ≈ ±20◦, the GTM_8ol will enter a large oscillatory spin

to either the left or right as no other stable attractors exist beyond these points. Figure 10 also

shows that, once in a spin to the right (i.e. with positive lateral variables), if the rudder deflection

is then returned to zero the periodic orbit becomes unstable via a torus bifurcation at δr = −4.92◦

and GTM_8ol is attracted back to the steep spiral dynamics of regime C. However, if the spin is to

the left (i.e. with negative lateral variables) then, as the rudder is reduced back to zero, GTM_8ol

remains attracted to the periodic orbit solutions and at δr ≈ 0◦ the periodic orbit is that of dynamic

regime F (for δr = 0.009,δe = −30) in Fig. 2 (we note that, as δr varies from > 20◦ back towards 0◦,

the period-one orbit does become unstable for 1◦ ≤ δr ≤ 4◦; however, the resulting period-doubled

orbits are stable). This confirms the earlier finding in Sec. IVB that the oscillatory spins only exist

at zero aileron and rudder to the left with negative roll rates.

To further visualise this transition, Fig. 11 shows the results of a 50s time history which started

on the steep spiral equilibrium of regime C where δr = 0.009◦, δe = −30, α = 20.74◦, p = 59.57◦/s,

labelled point c in Fig. 10; then anti-spin (positive) rudder inputs were applied to try to counter

the right steep spiral — see panel (d4) of Fig. 11. As expected from Fig. 10, once the rudder

deflection exceeds δr ≈ 20◦, instead of countering the steep spiral, the rudder inputs actually induce

the oscillatory spin of dynamics regime F. Once in this spin, if rudder deflection is decreased back

to zero then instead of returning to the spiral, the aircraft stays in the oscillatory spin to the left

and tracks back down to the oscillation between Fmin and Fmax in Fig. 2 once δr = 0.009. Figure

12 shows the trajectory plot of the time history shown in Fig. 11. Such a time history simulation
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Fig. 11 Time history of the mechanism for entering the period-one spin of regime F from the

steep spiral or regime C, showing time traces of: α, β, V , p, q and r (panels a1—a6). Panels

(b) and (c) show the corresponding trajectory in the (β,α) and (φ,θ)-planes, respectively; the

control surface schedules are: elevator, aileron, throttle and rudder (panels d1—d4).

is overlaid on top of the bifurcation diagram shown in Fig.13. This time history uses the same
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period-one spin of regime F from the steep spiral of regime C.

control surface amplitudes as in Fig. 11 but with a slower ramp input, at one tenth of the gradient,

for better visualisation. Figures 11-13 demonstrate that applying rudder to get out of the spiral

is an incorrect strategy for recovery from the upset and will actually increase the severity. On

the other hand, simply pushing forward on the stick, increasing δe to above δe = −1.3◦ and back

into dynamics regime A, as described in section IV, will recover the aircraft from both the spiral

of regime C or the oscillatory spins of regime F and G (passing through regime C before reaching

regime A)— given sufficient altitude. This emphasises the advice given in Ref [7] that the first action

for recovery should be to push forward on the stick and reducing angle of attack before trying to

recover attitude.
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VI. Conclusion

The bifurcation analysis presented here has identified some of the rich variety of conditions gov-

erning the behaviour of the GTM; more specifically, it has found a number of stable attractors which

are associated with upset. Indeed, compared to simulations that require one to wait for time his-

tory transients to disappear on weak attractors, bifurcation diagrams are much less computationally

costly to create. Furthermore, bifurcation diagrams yield the underlying structure of the dynamical

system and, hence, suggest where and when time histories should be run to further explain the

predicted behaviour. Time history simulations have been presented to complement the bifurcation

diagrams to give further clarity on the nature of the different regimes of attractor dynamics. It is

shown that the GTM is susceptible to upset in the form of steep spiral motions, brought about by

loss of spiral mode stability. The bifurcation analysis was also able to identify that rudder input

aimed at reducing the steep spiral yaw rate can instead lead to oscillatory spin behaviour instead

of recovery, and that recovery can be effected by returning the elevator setting to conventional trim

values.

The approach taken in this paper is amenable to a number of extensions. Firstly, the open-

loop behaviour of the GTM may be further explored by expanding the parameter space considered:

this may involve additional control inputs and also variables such as centre of gravity location

and parameters governing the damage scenarios that are incorporated into the model. Another

potentially fruitful extension is to exploit bifurcation analysis techniques in considering the upset

tendencies of the GTM augmented with closed loop control, and their potential to provide insight

into control law design for upset prevention and recovery.
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