143 research outputs found
Trophoblast Invasion and Placentation: Molecular Mechanisms and Regulation
Trophoblast invasion is a key process during human placentation. This event constitutes the basis of the conversion of the uterine spiral arteries, a process which allows an adequate vascular connection between the intervillous space and the maternal blood flow. Trophoblast invasion is transient, with stringent spatial and temporal control. Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is associated with decreased, shallow trophoblastic invasion. In this article, we review the molecular mechanisms of trophoblast invasion, and its mechanisms of regulation. Insights into the etiopathogenesis of preeclampsia will also be detailed.Peer reviewe
Recommended from our members
Mining the Plant-Herbivore Interface with a Leafmining Drosophila of Arabidopsis
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S. flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect–plant interactions.Organismic and Evolutionary Biolog
Whole-genome sequencing-based antimicrobial resistance characterization and phylogenomic investigation of 19 multidrug-resistant and extended-spectrum beta-lactamase-positive Escherichia coli strains collected from hospital patients in Benin in 2019
The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive E. coli isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identified by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 (n = 2), ST38 (n = 2), ST410 (n = 2), ST405 (n = 2), ST617 (n = 2), and ST1193 (n = 2). The blaCTX-M-15
gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes
associated with ESBL, such as blaOXA-1 (n = 14) and blaTEM-1 (n = 9). Additionally, we frequently
observed genes encoding resistance against aminoglycosides [aac-(6')-Ib-cr, n = 14],
quinolones (qnrS1, n = 4), tetracyclines [tet(B), n = 14], sulfonamides (sul2, n = 14), and
trimethoprim (dfrA17, n = 13). Nonsynonymous chromosomal mutations in the housekeeping
genes parC and gyrA associated with resistance to fluoroquinolones were also detected
in multiple isolates. Although the phylogenomic investigation did not reveal evidence of
hospital-acquired transmissions, we observed two very similar strains collected from
patients in different hospitals. By characterizing a set of multidrug-resistant isolates
collected from a largely unexplored environment, this study highlights the added value for
WGS as an effective early warning system for emerging pathogens and
antimicrobial resistance.The ARES (Académie de la Recherche pour l’Enseignement Supérieur), Belgium.http://www.frontiersin.org/Microbiologyam2022Genetic
Recommended from our members
Individual common variants exert weak effects on the risk for autism spectrum disorders.
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest
Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA)
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin‐dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes
Curation and expansion of Human Phenotype Ontology for defined groups of inborn errors of immunity.
BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms.
OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions.
METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs.
RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification.
CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities
LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD
Planning for citizen participation in the EU mission to restore our ocean and waters by 2030
21 pages, 5 figures, 1 table, supplementary information https://doi.org/10.1007/s40152-024-00385-x.-- Data availability: Data ownership is shared between PREP4BLUE consortium partners and therefore is not available for sharingThe European Commission’s Mission to “Restore our Ocean and Waters by 2030” (Mission Ocean & Waters) is, at the most superficial level, an overarching policy framework with the primary aim of improving the health of European ocean, sea, and freshwater ecosystems. However, its use of the Mission framing and emphasis on fostering social, political, and economic transformations through its activities makes it a much more holistic and ambitious undertaking. This article explores challenges and opportunities that arise with the emphasis placed on increasing citizen participation in Mission Ocean & Waters, in the context of “Post-Normal Science” (Funtowicz & Ravetz Funtowicz and Ravetz, Krimsky and Golding (eds), Social Theories of Risk, Greenwood Press, Westport, 1992). We begin with a description of Mission Ocean & Waters, discussing its citizen engagement ambitions through the lens of Post-Normal Science, before describing the research methods used by the Horizon Europe project Preparing the Research and Innovation Core for Mission Oceans, Seas, & Waters (PREP4BLUE). We then present our results, highlighting four citizen engagement-based challenges that the Mission faces, and how PREP4BLUE has engaged with them. Finally, we discuss the future activities or structural changes that will be required if the Mission’s citizen engagement targets are to be achieved and for citizens to become core actors in protecting European aquatic ecosystems and developing a sustainable blue economy. These insights should prove useful to those developing and delivering Mission projects and those researching citizen participation in ocean and freshwater related challengesThe authors declare that the research for this article was funded by the European Union, through its Horizon Europe Program, Grant Number 101056957 (PREP4BLUE)With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice
International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage
- …