30 research outputs found

    The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A loss of function of the L-type calcium channel, Cav1.2, results in a cardiac specific disease known as Brugada syndrome. Although many Brugada syndrome channelopathies reduce channel function, one point mutation in the N-terminus of Cav1.2 (A39V) has been shown to elicit disease a phenotype because of a loss of surface trafficking of the channel. This lack of cell membrane expression could not be rescued by the trafficking chaperone Cavβ.</p> <p>Findings</p> <p>We report that despite the striking loss of trafficking described previously in the cardiac Cav1.2 channel, the A39V mutation while in the background of the brain isoform traffics and functions normally. We detected no differences in biophysical properties between wild type Cav1.2 and A39V-Cav1.2 in the presence of either a cardiac (Cavβ2b), or a neuronal beta subunit (Cavβ1b). In addition, the A39V-Cav1.2 mutant showed a normal Cavβ2b mediated increase in surface expression in tsA-201 cells.</p> <p>Conclusions</p> <p>The Brugada syndrome mutation A39V when introduced into rat brain Cav1.2 does not trigger the loss-of-trafficking phenotype seen in a previous study on the human heart isoform of the channel.</p

    Impact of implementing a fast-track protocol and standardized guideline for the management of pediatric appendicitis

    Get PDF
    Background: In 2017, a provincial guideline was created to fast track and standardize care for pediatric appendicitis in Alberta. We conducted a study to determine the impact of implementation of the guideline at our institution on length of stay (LOS), antibiotic stewardship efforts and costs. Methods: We performed a retrospective review of the charts of all patients younger than 18 years of age who underwent appendectomy at our institution in 2 periods: before guideline implementation (Dec. 1, 2016, to May 31, 2017) and after implementation (Dec. 1, 2017, to May 31, 2018). We compared LOS, duration of antibiotic therapy, 30-day postdischarge complication rates and variable cost between the 2 cohorts. Results: Of the 276 total appendectomy procedures performed, 185 were for simple appendicitis (81 before guideline implementation and 104 after implementation), and 91 were for complicated appendicitis (44 and 47, respectively). The median LOS was shorter in the postimplementation cohort for both simple and complicated appendicitis (15.5 h [interquartile range (IQR) 12-19 h] v. 17.0 h [IQR 13-22 h], p = 0.03; and 3.0 d [IQR 2-4 d] v. 3.0 d [IQR 3-5 d], p = 0.05, respectively). Patients with complicated appendicitis had fewer antibiotic days after guideline implementation; the difference was statistically significant for patients without diffuse peritoneal contamination or abscess formation (p = 0.02). There were no differences between the cohorts with respect to 30-day rates of complications, including emergency department visits, readmission and surgical site infections. After guideline implementation, the average variable cost per patient was reduced by 230,equatingtoatotalaverageannualcostsavingsof230, equating to a total average annual cost savings of 75 842 for our institution. Conclusion: The implementation of a provincial guideline aimed at standardizing care in pediatric appendicitis at our institution was associated with shortened LOS, improved antibiotic stewardship efforts and reduced cost of care. Other institutions may replicate our model of a standardized pathway in the management of pediatric appendicitis in an effort to improve the quality of patient care and reduce health care costs

    Effect of the Brugada syndrome mutation A39V on calmodulin regulation of Cav1.2 channels

    Full text link
    BACKGROUND: The L-type calcium channel Cav1.2 is important for brain and heart function. The ubiquitous calcium sensing protein calmodulin (CaM) regulates calcium dependent gating of Cav1.2 channels by reducing calcium influx, a process known as calcium-dependent inactivation (CDI). Dissecting the calcium-dependence of CaM in this process has benefited greatly from the use of mutant CaM molecules which are unable to bind calcium to their low affinity (N-lobe) and high affinity (C-lobe) binding sites. Unlike CDI, it is unknown whether CaM can modulate the activation gating of Cav1.2 channels. RESULTS: We examined a Cav1.2 point mutant in the N-terminus region of the channel (A39V) that has been previously linked to Brugada syndrome. Using mutant CaM constructs in which the N- and/or C-lobe calcium binding sites were ablated, we were able to show that this Brugada syndrome mutation disrupts N-lobe CDI of the channel. In the course of these experiments, we discovered that all mutant CaM molecules were able to alter the kinetics of channel activation even in the absence of calcium for WT-Cav1.2, but not A39V-Cav1.2 channels. Moreover, CaM mutants differentially shifted the voltage-dependence of activation for WT and A39V-Cav1.2 channels to hyperpolarized potentials. Our data therefore suggest that structural changes in CaM that arise directly from site directed mutagenesis of calcium binding domains alter activation gating of Cav1.2 channels independently of their effects on calcium binding, and that the N-terminus of the channel contributes to this CaM dependent process. CONCLUSIONS: Our data indicate that caution must be exercised when interpreting the effects of CaM mutants on ion channel gating

    A T-type channel-calmodulin complex triggers αCaMKII activation

    Get PDF
    Abstract Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.1 channel at rest that is lost through an activity-dependent and Cav3.1 calcium-dependent CaM dissociation. Moreover, Cav3 calcium influx is sufficient to activate αCaMKII in the cytoplasm in a manner that depends on an intact Cav3.1 C-terminus needed to support the CaM interaction. Our findings thus establish that T-type channel calcium influx invokes a novel dynamic interaction between CaM and Cav3.1 channels to trigger a signaling cascade that leads to αCaMKII activation

    Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France

    Get PDF
    Bulk sampling of a number of different marine and marginal marine lithofacies in the British Bathonian has allowed us to assess the palaeoenvironmental distribution of crinoids for the first time. Although remains are largely fragmentary, many species have been identified by comparison with articulated specimens from elsewhere, whilst the large and unbiased sample sizes allowed assessment of relative proportions of different taxa. Results indicate that distribution of crinoids well corresponds to particular facies. Ossicles of Chariocrinus and Balanocrinus dominate in deeper-water and lower-energy facies,with the former extending further into shallower-water facies than the latter. Isocrinus dominates in shallower water carbonate facies, accompanied by rarer comatulids, and was also present in the more marine parts of lagoons. Pentacrinites remains are abundant in very high-energy oolite shoal lithofacies. The presence of millericrinids within one, partly allochthonous lithofacies suggests the presence of an otherwise unknown hard substrate from which they have been transported. These results are compared to crinoid assemblages from other Mesozoic localities, and it is evident that the same morphological ad-aptations are present within crinoids from similar lithofacies throughout the Jurassic and Early Cretaceous

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore