2,550 research outputs found

    Enhancement of quantum dot peak-spacing fluctuations in the fractional q uantum Hall regime

    Full text link
    The fluctuations in the spacing of the tunneling resonances through a quantum dot have been studied in the quantum Hall regime. Using the fact that the ground-state of the system is described very well by the Laughlin wavefunction, we were able to determine accurately, via classical Monte Carlo calculations, the amplitude and distribution of the peak-spacing fluctuations. Our results clearly demonstrate a big enhancement of the fluctuations as the importance of the electronic correlations increases, namely as the density decreases and filling factor becomes smaller. We also find that the distribution of the fluctuations approaches a Gaussian with increasing density of random potentials.Comment: 6 pages, 3 figures all in gzipped tarred fil

    The Metropolis and Evangelical Life: Coherence and Fragmentation in the ‘Lost City of London’

    Get PDF
    This article examines the interplay of different processes of cultural and subjective fragmentation experienced by conservative evangelical Anglicans, based on an ethnographic study of a congregation in central London. The author focuses on the evangelistic speaking practices of members of this church to explore how individuals negotiate contradictory norms of interaction as they move through different city spaces, and considers their response to tensions created by the demands of their workplace and their religious lives. Drawing on Georg Simmel’s ‘The Metropolis and Mental Life’, the author argues that their faith provides a sense of coherence and unity that responds to experiences of cultural fragmentation characteristic of everyday life in the city, while simultaneously leading to a specific consciousness of moral fragmentation that is inherent to conservative evangelicalism

    Evanescent wave approach to diffractive phenomena in convex billiards with corners

    Full text link
    What we are going to call in this paper "diffractive phenomena" in billiards is far from being deeply understood. These are sorts of singularities that, for example, some kind of corners introduce in the energy eigenfunctions. In this paper we use the well-known scaling quantization procedure to study them. We show how the scaling method can be applied to convex billiards with corners, taking into account the strong diffraction at them and the techniques needed to solve their Helmholtz equation. As an example we study a classically pseudointegrable billiard, the truncated triangle. Then we focus our attention on the spectral behavior. A numerical study of the statistical properties of high-lying energy levels is carried out. It is found that all computed statistical quantities are roughly described by the so-called semi-Poisson statistics, but it is not clear whether the semi-Poisson statistics is the correct one in the semiclassical limit.Comment: 7 pages, 8 figure

    Disorder Induced Ferromagnetism in Restricted Geometries

    Full text link
    We study the influence of on-site disorder on the magnetic properties of the ground state of the infinite UU Hubbard model. We find that for one dimensional systems disorder has no influence, while for two dimensional systems disorder enhances the spin polarization of the system. The tendency of disorder to enhance magnetism in the ground state may be relevant to recent experimental observations of spin polarized ground states in quantum dots and small metallic grains.Comment: 4 pages, 4 figure

    Timing molecular motion and production with a synthetic transcriptional clock

    Get PDF
    The realization of artificial biochemical reaction networks with unique functionality is one of the main challenges for the development of synthetic biology. Due to the reduced number of components, biochemical circuits constructed in vitro promise to be more amenable to systematic design and quantitative assessment than circuits embedded within living organisms. To make good on that promise, effective methods for composing subsystems into larger systems are needed. Here we used an artificial biochemical oscillator based on in vitro transcription and RNA degradation reactions to drive a variety of “load” processes such as the operation of a DNA-based nanomechanical device (“DNA tweezers”) or the production of a functional RNA molecule (an aptamer for malachite green). We implemented several mechanisms for coupling the load processes to the oscillator circuit and compared them based on how much the load affected the frequency and amplitude of the core oscillator, and how much of the load was effectively driven. Based on heuristic insights and computational modeling, an “insulator circuit” was developed, which strongly reduced the detrimental influence of the load on the oscillator circuit. Understanding how to design effective insulation between biochemical subsystems will be critical for the synthesis of larger and more complex systems

    Nodal domains statistics - a criterion for quantum chaos

    Get PDF
    We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2-dd quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well established criterion based on spectral statistics.Comment: 4 pages, 5 figures, revte

    Fluctuation of Conductance Peak Spacings in Large Semiconductor Quantum Dots

    Full text link
    Fluctuation of Coulomb blockade peak spacings in large two-dimensional semiconductor quantum dots are studied within a model based on the electrostatics of several electron islands among which there are random inductive and capacitive couplings. Each island can accommodate electrons on quantum orbitals whose energies depend also on an external magnetic field. In contrast with a single island quantum dot, where the spacing distribution is close to Gaussian, here the distribution has a peak at small spacing value. The fluctuations are mainly due to charging effects. The model can explain the occasional occurrence of couples or even triples of closely spaced Coulomb blockade peaks, as well as the qualitative behavior of peak positions with the applied magnetic field.Comment: 13 pages, 4 figures, accepted for publication in PR

    Spectral properties of quantized barrier billiards

    Full text link
    The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal approximation. All results together are consistent with the so-called semi-Poisson statistics.Comment: 8 pages, 9 figure

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    Detecting the Kondo screening cloud around a quantum dot

    Full text link
    A fundamental prediction of scaling theories of the Kondo effect is the screening of an impurity spin by a cloud of electrons spread out over a mesoscopic distance. This cloud has never been observed experimentally. Recently, aspects of the Kondo effect have been observed in experiments on quantum dots embedded in quantum wires. Since the length of the wire may be of order the size of the screening cloud, such systems provide an ideal opportunity to observe it. We point out that persistent current measurements in a closed ring provide a conceptually simple way of detecting this fundamental length scale.Comment: 4 pages, RevTex, 1 postscript figur
    corecore