2,042 research outputs found

    Análise diagnóstica e prospectiva da cadeia produtiva de energia de biomassa de origem florestal.

    Get PDF
    bitstream/CNPF-2009-09/42554/1/Doc151.pdf1 CD-ROM

    Small inner marsh area delimitation using remote sensing spectral indexes and decision tree method in southern Brazil

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] Vast small inner marsh (SIM) areas have been lost in the past few decades through the conversion to agricultural, urban and industrial lands. The remaining marshes face several threats such as drainage for agriculture, construction of roads and port facilities, waste disposal, among others. This study integrates 17 remote sensing spectral indexes and decision tree (DT) method to map SIM areas using Sentinel 2A images from Summer and Winter seasons. Our results showed that remote sensing indexes, although not developed specifically for wetland delimitation, presented satisfactory results in order to classify these ecosystems. The indexes that showed to be more useful for marshes classification by DT techniques in the study area were NDTI, BI, NDPI and BI_2, with 25.9%, 17.7%, 11.1% and 0.8%, respectively. In general, the Proportion Correct (PC) found was 95.9% and 77.9% for the Summer and Winter images respectively. We hypothetize that this significant PC variation is related to the rice-planting period in the Summer and/or to the water level oscillation period in the Winter. For future studies, we recommend the use of active remote sensors (e.g., radar) and soil maps in addition to the remote sensing spectral indexes in order to obtain better results in the delimitation of small inner marsh areas.[ES] En las últimas décadas se han perdido grandes áreas de pequeñas marismas interiores (SIM) a través de la conversión a tierras agrícolas, urbanas e industriales. Las marismas restantes enfrentan varias amenazas, como el drenaje para la agricultura, la construcción de carreteras e instalaciones portuarias, la eliminación de residuos, entre otras. Este estudio integra 17 índices espectrales de teledetección y un método basado en árboles de decisión (DT) para cartografiar áreas de pequeñas marismas interiores utilizando imágenes del satélite Sentinel 2A de verano e invierno. Los resultados muestran que los índices de teledetección, aunque no han sido desarrollados específicamente para la delimitación de marismas, presentan resultados satisfactorios para clasificar estos ecosistemas. Los índices que demostraron ser más útiles para la clasificación de marismas mediante técnicas de DT en el área de estudio fueron el NDTI, BI, NDPI y BI_2, con 25.9%, 17.7%, 11.1% y 0.8%, respectivamente. En general, la proporción correcta encontrada fue de 95.9% y 77.9% para las imágenes de verano e invierno, respectivamente. Nuestra hipótesis es que esta variación significativa de la proporción correcta está relacionada con el período de siembra del arroz en verano y/o con el período de oscilación del nivel del agua en invierno. Para futuras investigaciones, recomendamos el uso de sensores remotos activos (por ejemplo, radar) y mapas de suelo además de los índices espectrales de teledetección para obtener mejores resultados en la delimitación de pequeñas áreas de marismas interiores.João Paulo Delapasse Simioni thanks the CAPES agency for providing a doctoral fellowship. The au-thors acknowledge the Center for Remote Sensing and Meteorology (CEPSRM) at the Federal University of Rio Grande do Sul (UFRGS) for the support provided for this research.Simioni, JPD.; Guasselli, LA.; Ruiz, LFC.; Nascimento, VF.; De Oliveira, G. (2018). Delimitación de pequeñas marismas interiores mediante índices espectrales y árboles de decisión en el sur de Brasil. Revista de Teledetección. (52):55-66. doi:10.4995/raet.2018.10366SWORD556652Artigas, F. J., Yang, J. 2006. Spectral discrimination of marsh vegetation types in the New Jersey Meadowlands, USA. Wetlands, 26(1), 271. https:// doi.org/10.1672/0277-5212(2006)26[271:sdomvt]2. 0.co;2Belloli, T. F. 2016. Environmental Impacts Due to Rice, Large Banhado Environmental Protection Area - RS. Federal University of Rio Grande do Sul. Retrieved from https://www.lume.ufrgs.br/bitstream/ handle/10183/158968/001023034.pdf?sequence=1Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., Marani, M. 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54-67. https://doi.org/10.1016/j.rse.2006.06.006Canadian Wetland Inventory Technical Group. 2016. Canada Wetland Inventory (Data Model). Stonewall. Retrieved from http://www.ducks.ca/assets/2017/01/ CWIDMv7_01_E.pdfClevers, J. G. P. W., Leeuwen, H. J. C. Van, Sensing, R., Verhoef, W. 1989. Estimanting apar by means of vegetation indeces: a sensitivity analysis. XXIX ISPRS Congress Technical Commission VII: Interpretation of Photographic and Remote Sensing Data, 691-698.Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. https:// doi.org/10.1016/0034-4257(91)90048-BDeering, D. W. 1975. Measuring forage production of grazing units from Landsat MSS data. Proceedings of 10th International Symposium on Remote Sensing of Environment, 1975, 1169-1178.Delegido, J., Verrelst, J., Alonso, L., Moreno, J. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063Di Vittorio, C. A., Georgakakos, A. P. 2018. Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, 204, 1-17. https://doi.org/10.1016/j.rse.2017.11.001Dong, Z., Wang, Z., Liu, D., Song, K., Li, L., Jia, M., Ding, Z. 2014. Mapping Wetland Areas Using Landsat-Derived NDVI and LSWI: A Case Study of West Songnen Plain, Northeast China. Journal of the Indian Society of Remote Sensing, 42(3), 569-576. https://doi.org/10.1007/s12524-013-0357-1Dvorett, D., Davis, C., Papeş, M. 2016. Mapping and Hydrologic Attribution of Temporary Wetlands Using Recurrent Landsat Imagery. Wetlands, 36(3), 431- 443. https://doi.org/10.1007/s13157-016-0752-9Environmental Protection Agency. 2001. Functions and Values of Wetlands. Watershed Academy Web. Washington. Retrieved from https://www.epa.gov/wetlandsfunctionsvaluesEscadafal, R. 1989. Remote sensing of arid soil surface color with Landsat thematic mapper. Advances in Space Research, 9(1), 159-163. https://doi.org/10.1016/0273-1177(89)90481-XEtchelar, C. B. 2017. Erosive Processes in Wetlands. Rio Grande do Sul Federal University. Retrieved from https://www.lume.ufrgs.br/bitstream/ handle/10183/171041/001054625.pdf?sequence=1Fariña, J. M., He, Q., Silliman, B. R., Bertness, M. D. 2017. Biogeography of salt marsh plant zonation on the Pacific coast of South America. Journal of Biogeography, 12, 238-247. https://doi.org/10.1111/ jbi.13109Fluet-Chouinard, E., Lehner, B., Rebelo, L. M., Papa, F., Hamilton, S. K. 2015. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment, 158, 348-361. https://doi.org/10.1016/j.rse.2014.10.015Friedl, M.A. M. A., Brodley, C. E. C. E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399- 409. https://doi.org/10.1016/S0034-4257(97)00049-7Gao, B. C. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257- 266. https://doi.org/10.1016/S0034-4257(96)00067-3Gedan, K. B., Crain, C. M., Bertness, M. D. 2009. Smallmammal herbivore control of secondary succession in New-England tidal marshes. Ecology, 90(2), 430- 440. https://doi.org/10.1890/08-0417.1Gitelson, A. A., Kaufman, Y. J., Merzlyak, M. N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295- 309. https://doi.org/10.1016/0034-4257(88)90106-XJensen, J. R. 2007. Remote sensing of the environment : an earth resource perspective. Pearson Prentice Hall.Judd, C., Steinberg, S., Shaughnessy, F., Crawford, G. 2007. Mapping salt marsh vegetation using aerial hyperspectral imagery and linear unmixing in Humboldt Bay, California. Wetlands, 27(4), 1144-1152. https://doi.org/10.1672/0277- 5212(2007)27[1144:msmvua]2.0.co;2Junk. 2013. Definição e Classificação das Áreas Úmidas (AUs) Brasileiras : Base Científica para uma Nova Política de Proteção e Manejo Sustentável Prefácio : Lista dos autores e suas instituições : Centro de Pesquisa Do Pantanal, BrazilJunk, W. J., Bayley, P. B., Sparks, R. E. 1989. The Flood Pulse Concept in River-Floodplain Systems. International Large River Symposium.Junk, W. J., Piedade, M. F. 2015. Áreas Úmidas (AUs) Brasileiras: Avanços e Conquistas Recentes. Boletim Ablimno, 41(2), 20-24.Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L. D., Agostinho, A. A. 2014. Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(1), 5-22. https://doi. org/10.1002/aqc.2386Kandus, P., Minotti, P., Malvárez, A. I. 2008. Distribution of wetlands in Argentina estimated from soil charts. Acta Scientiarum - Biological Sciences, 30(4), 403-409. https://doi.org/10.4025/actascibiolsci.v30i4.5870Kaplan, G., Avdan, U. 2017. Mapping and Monitoring Wetlands Using SENTINEL 2 Satellite Imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV, 271-277. https:// doi.org/10.5194/isprs-annals-IV-4-W4-271-2017Kaplan, G., Avdan, U. 2017. Wetland Mapping Using Sentinel 1 SAR Data. In Suha Ozden, R. Cengiz Akbulak, Cuneyt Erenoglu, Oznur Karaca, Faize Saris, & Mustafa Avcioglu (Eds.), International Symposium on GIS Applications in Geography & Geosciences.Kaufman, Y., Tanre, D. 1992. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2). https://doi.org/10.1109/36.134076Kulawardhana, R. W., Thenkabail, P. S., Vithanage, J., Biradar, C., Islam, M. A. a, Gunasinghe, S., Alankara, R. 2007. Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data. Journal of Spatial Hydrology, 7(2), 62-96. https://doi. org/10.1017/CBO9780511806049Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., Lafaye, M. 2007. Classification of ponds from highspatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1), 66-74. https://doi.org/10.1016/j. rse.2006.07.012Leite, M. G., Guasselli, L. A. 2013. Spatio-temporal dynamics of aquatic macrophytes in Banhado Grande, Gravataí River basin,. Para Onde!?, 7(1), 17-24.Liu, L., Liu, Y. H., Liu, C. X., Wang, Z., Dong, J., Zhu, G. F., Huang, X. 2013. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecological Engineering, 53, 138-143. https://doi.org/10.1016/j. ecoleng.2012.12.033Mahdavi, S., Salehi, B., Amani, M., Granger, J. E., Brisco, B., Huang, W., Hanson, A. 2017. ObjectBased Classification of Wetlands in Newfoundland and Labrador Using Multi-Temporal PolSAR Data. Canadian Journal of Remote Sensing, 43(5), 432-450. https://doi.org/10.1080/07038992.2017.1342206Maltchik, L., Rolon, A. S., Guadagnin, D. L., Stenert, C. 2004. Wetlands of Rio Grande do Sul, Brazil: a classification with emphasis on plant communities. Acta Limnol. Bras, 16(2), 137-151.Mao, R., Ye, S.-Y., Zhang, X.-H. 2018. SoilAggregate-Associated Organic Carbon Along Vegetation Zones in Tidal Salt Marshes in the Liaohe Delta. CLEAN - Soil, Air, Water, 1-7. https://doi.org/10.1002/clen.201800049McFeeters, S. K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714Mcowen, C. J., Weatherdon, L. V, Bochove, J.-W. Van, Sullivan, E., Blyth, S., Zockler, C., Fletcher, S. 2017. A global map of saltmarshes. Biodiversity Data Journal, 5(5), e11764. https://doi.org/10.3897/BDJ.5.e11764Miranda, C. de S., Paranho Filho, A. C., Pott, A. 2018. Changes in vegetation cover of the Pantanal wetland detected by vegetation index: a strategy for conservation. Biota Neotropica, 18(1), 1-6. https://doi.org/10.1590/1676-0611-bn-2016-0297Mondal, I., Bandyopadhyay, J. 2014. Coastal Wetland Modeling Using Geoinformatics Technology of Namkhana Island, South 24 Parganas, WB, India. Open Access Library Journal, 975, 1-17. https://doi.org/10.4236/oalib.1100975Nielsen, S. 1994. Geomorfologia da bacia do rio GravataíRS. In Bacia do rio Gravataí-RS: informações básicas para a gestão territorial (pp. 1-18). Porto Alegre: Proteger.Nunes da Cunha, C., Piedade, M. T. F., Junk, W. J. 2015. Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. EdUFMT (Vol. 1). Cuiaba. https://doi.org/10.1017/CBO9781107415324.004Pearson, R. L., Miller, L. D. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Remote Sensing of Environment, 8, 1355-1365.Pontius, R. G., Millones, M. 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1Ramos, R. A., Pasqualetto, A. I., Balbueno, R. A., Quadros, E. L. L. de, Neves, D. D. das. 2014. Mapeamento e diagnóstico de áreas úmidas no Rio Grande do Sul, com o uso de ferramentas de geoprocessamento. In Anais do Simposio de Áreas Protegidas (pp. 17-21). Viçosa.Ramsar. 2002. A Framework for Wetland Inventory. 8th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands. Valencia. Retrieved from http://archive.ramsar.org/pdf/inventoryframework-2002.pdfRichardson, A. J., Wiegand, C. L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552.Rossato, M. S. 2011. Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. Universidade Federal do Rio Grande do Sul.Rouse, J. W., Hass, R. H., Schell, J. A., Deering, D. W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1, 309-317. https://doi.org/citeulike-article-id:12009708Ruiz, L. F. C., Caten, A. ten, Dalmolin, R. S. D. 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, 44(6), 1001-1007. https://doi.org/10.1590/S0103-84782014000600008Sakané, N., Alvarez, M., Becker, M., Böhme, B., Handa, C., Kamiri, H. W., Langensiepen, M., Menz, G., Misana, S., Mogha, N. G., Möseler, B. M., Mwita, E. J., Oyieke, H. A., Van Wijk, M. T. 2011. Classification, characterisation, and use of small wetlands in East Africa. Wetlands, 31, 1103. https://doi.org/10.1007/s13157-011-0221-4Sharma, A., Panigrahy, S., Singh, T. S., Patel, J. G., Tanwar, H. 2014. Wetland Information System Using Remote Sensing and GIS in Himachal Pradesh , India. Asian Journal of Geoinformatics, 14(4), 13-22.Sharpe, P. J., Kneipp, G., Forget, A. 2016. Comparison of Alternative Approaches for Wetlands Mapping: A Case Study from three U.S. National Parks. Wetlands, 36(3), 547-556. https://doi.org/10.1007/s13157-016-0764-5Silva, R. C. da. 2016. Estudo da dinâmica da fragilidade ambiental na Bacia Hidrográfica do Rio Gravataí, RS. Universidade Federal da Bahia.Simioni, J. P. D., Guasselli, L. A., Etchelar, C. B. 2017. Connectivity among Wetlands of EPA of Banhado Grande, RS Conetividade entre Áreas Úmidas, APA do Banhado Grande, RS. Brazilian Journal of Water Resources, 22(15). https://doi.org/10.1590/2318-0331.011716096Stefano, L. de. 2003. WWF ' s Water and Wetland Index Summary of Water Framework Directive results. WWF European Living Waters Programme c/o. San Francisco.Subramaniam, S., Saxena, M. 2011. Automated algorithm for extraction of wetlands from IRS resourcesat LISS III data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 193-198). Bhopal.Teixeira, S. G. 2011. Radar de abertura sintética aplicado ao mapeamento e reconhecimento de zonas úmidas costeiras. Universidade Federal do Pará.Visser, J. M., Sasser, C. E. 1999. Marsh Vegetation of the Mississippi River Deltaic Plain. Estuaries, 21(4B), 818-828.Walsh, N., Bhattasali, N., Chay, F. 2014. Mapping Tidal Salt Marshes.White, D. C., Lewis, M. M., Green, G., Gotch, T. B. 2016. A generalizable NDVI-based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin. Ecological Indicators, 60, 1309-1320. https://doi.org/10.1016/j.ecolind.2015.01.032Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179Yan, D., Wünnemann, B., Hu, Y., Frenzel, P., Zhang, Y., Chen, K. 2017. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years. Quaternary Science Reviews, 162, 42-59.Zhou, Q., Jing, Z., Jiang, S. 2003. Remote sensing image fusion for different spectral and spatial resolutions with bilinear resampling wavelet transform. In Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems 2, 1206-1213. Shanghai: IEEE. https://doi.org/10.1109/ITSC.2003.125267

    Seasonal variation in the incidence of deep vein thrombosis in patients with deficiency of protein C or protein S.

    Get PDF
    An attempt was made to identify circaseptanal or seasonal variation of deep vein thrombosis (DVT) in a population with protein C or protein S deficit. Forty-four patients with DVT and protein C or protein S deficit were studied for 1 year. A significant circannual rhythm was found for the total population that peaked during winter. There was also a significant falling circaseptanal rhythm on Fridays. These observations may optimize an adequate and precise anticoagulant therapy in patients witi protein C or protein S deficits

    Análise de viabilidade econômica de um sistema de produção modal de eucalipto para lenha na região de Itapeva, SP.

    Get PDF
    bitstream/item/141820/1/Comunicado-Tecnico-365-2015.pd

    Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia.

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G0/G1 phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3a/b and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34þ/CD4/CD7), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL

    Impacto do custo de transporte no risco da rentabilidade florestal na Região de Itapeva-SP.

    Get PDF
    A distância de transporte exerce impacto significativo no retorno econômico dos plantios florestais, especialmente quando são consideradas as incertezas associadas à atividade florestal e, neste trabalho, ao cultivo de eucalipto para produção de lenha. A análise de simulação pode ser adotada para avaliar tais incertezas, bem como o impacto na sua rentabilidade esperada. O objetivo deste estudo é avaliar o impacto da distância (custo) de transporte no risco e retorno econômico de um sistema de produção modal de eucalipto para lenha, utilizado por grandes produtores na região de Itapeva, São Paulo. O risco foi avaliado considerando o emprego do Método de Monte Carlo, utilizando o software @RISK, em três cenários de distância modal de transporte (20 km, 30 km e 40 km). Os resultados indicaram que o aumento da distância de transporte afeta negativamente a rentabilidade esperada da produção florestal, podendo, inclusive, alterar o seu risco pela modificação das curvas de densidade de probabilidade dos indicadores financeiros em diferentes cenários. Os valores modais dos indicadores obtidos na análise de risco diferiram dos seus valores calculados para o sistema de produção modal, ressaltando a importância da análise de risco como ferramenta de apoio à tomada de decisão

    Impacto do regime de manejo na rentabilidade da produção de lenha de eucalipto na região de Itapeva-SP, sob condições de risco.

    Get PDF
    O cultivo de eucalipto para produção de lenha está sujeito a um conjunto de incertezas relacionadas às dificuldades de previsibilidade de eventos futuros que impactam na rentabilidade dos projetos. Neste contexto, a análise de simulação pode ser adotada objetivando conhecer o risco que tais oscilações nas variáveis de entrada têm sobre o retorno de um investimento. Assim, o objetivo deste trabalho foi avaliar o risco do retorno econômico de um sistema de produção modal de eucalipto para lenha. A avaliação foi realizada na região de Itapeva/SP. Foram utilizadas técnicas de entrevistas e painel com especialistas, representando a prática adotada por grandes produtores. Os indicadores de viabilidade econômica considerados foram o Valor Anual Equivalente (VAE), a Taxa Interna de Retorno (TIR) e o Custo Médio de Produção (CMPr). O risco foi avaliado considerando o emprego do Método de Monte Carlo, com o uso do software @RISK, considerando dois regimes de manejo e simulação do preço da madeira (já entregue ao cliente), da produtividade esperada, e dos rendimentos das operações de coveamento (implantação), corte e extração (colheita). Os resultados indicaram que o regime de manejo com duas rotações proporciona menor risco para a atividade e que o preço da madeira e a produção esperada são as variáveis de risco que mais impactam o resultado econômico
    corecore