7 research outputs found

    Membrane binding of antimicrobial peptides is modulated by lipid charge modification

    Get PDF
    Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification

    Switching cytolytic nanopores into antimicrobial fractal ruptures by a single side chain mutation

    Get PDF
    Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8–11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Membrane binding of antimicrobial peptides is modulated by lipid charge modification

    No full text
    Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification

    Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel

    Full text link
    Resistance to antiretroviral drugs remains an important limitation to successful human immunodeficiency virus type 1 (HIV-1) therapy. Resistance testing can improve treatment outcomes for infected individuals. The availability of new drugs from various classes, standardization of resistance assays, and the development of viral tropism tests necessitate new guidelines for resistance testing. The International AIDS Society-USA convened a panel of physicians and scientists with expertise in drug-resistant HIV-1, drug management, and patient care to review recently published data and presentations at scientific conferences and to provide updated recommendations. Whenever possible, resistance testing is recommended at the time of HIV infection diagnosis as part of the initial comprehensive patient assessment, as well as in all cases of virologic failure. Tropism testing is recommended whenever the use of chemokine receptor 5 antagonists is contemplated. As the roll out of antiretroviral therapy continues in developing countries, drug resistance monitoring for both subtype B and non-subtype B strains of HIV will become increasingly important

    Multiple loci on 8q24 associated with prostate cancer susceptibility

    No full text
    Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 x 10(-8); rs620861: OR = 0.90, P = 4.8 x 10(-8)). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility

    Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

    Get PDF
    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we have previously conducted a genome-wide association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and 1,894 controls. We have now evaluated promising associations in a second stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage, involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33)
    corecore