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Abstract
Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To
identify common PrCa susceptibility alleles, we have previously conducted a genome-wide
association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically
detected disease and 1,894 controls. We have now evaluated promising associations in a second
stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage,
involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously
identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes
2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33).

Genome-wide association studies (GWAS) provide a powerful approach to identify common
disease alleles. We previously conducted a GWAS1, based on genotyping of 541, 129 SNPs
in 1,854 clinically detected PrCa cases and 1,894 controls (see Figure 1, stage 1). Follow-up
genotyping of SNPs exhibiting strong evidence of association (P<10−6), in a further 3,268
cases and 3,366 controls, allowed us to identify SNPs at 7 susceptibility loci associated with
the disease at genome-wide levels of significance1. Other studies have identified an additional
8 loci2–9. These loci, however, explain only a small fraction of the familial risk of PrCa.
Moreover, the strength of the associations that have been detected are generally small (per-
allele odds ratios, OR, 1.1–1.2), and the power of the existing studies to detect many of the
susceptibility alleles has been limited. It is highly likely, therefore, that other PrCa
predisposition loci exist, and that such loci should be detectable by studies with larger sample
sizes.

In an attempt to identify further susceptibility loci, we conducted a more extensive follow-up
of SNPs showing evidence of association in stage 1 of our GWAS. We designed a panel of
47,120 SNPs, aiming to include all SNPs with a significant association in stage 1 at P-trend
(1df)<.05 or P(2df)<.01 (see Online Methods). These SNPs were genotyped using the Illumina
iSELECT platform in 3,894 PrCa cases and 4,055 controls from the United Kingdom (UK)
and Australia (Figure 1, stage 2). After quality control (QC) exclusions (as described in Online
Methods), we utilised data from 43,671 SNPs in 3,650 PrCa cases and 3,940 controls.
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Genotype frequencies in cases and controls were compared using a 1 degree of freedom (df)
Cochran-Armitage trend test (for QQ plots see Supplementary Figure 1). There was little
evidence of inflation in the test statistics in the UK samples (estimated inflation factor λ=1.08),
but there was more marked inflation in those from Australia (λ=1.23; λ=1.19 for stage 2
overall), suggestive of some population substructure. The Australian samples were selected
from three studies (MCCS, RFPCS and EOPCS; see Supplementary Note for cohort
descriptions), and further analysis revealed that adjustment for sub-study substantially reduced
the inflation (λ=1.08 for Australia, λ=1.14 overall). This inflation may reflect oversampling of
MCCS for individuals of South European ancestry. Principal components analysis identified
a distinct cluster that is overrepresented in the MCCS study, consistent with admixture in this
population (see Online Methods and Supplementary Figure 2). Adjustment for the first two
principal components in addition to stratification by sub-study did not, however, reduce the
inflation further. The residual inflation could reflect weak population substructure, or may
reflect the combined effects of weak susceptibility alleles.

There was a clear excess of nominally significant associations in stage 2, with 132 SNPs
significant at P<.0001 compared with ~4 that would be expected by chance (Supplementary
Table 1). After combining with the stage 1 data, 116 SNPs were significant at P <10−6

(Supplementary Table 2). Of these, twenty-six of the SNPs were on chromosome 8q24, a region
known to harbour multiple PrCa susceptibility loci 1, 3, 4, 6, 7 In addition, 42 SNPs were in the
7 regions we identified in our previous analysis1 and 13 were in two regions on 17q identified
by Gudmundsson et al5. We also found strong evidence for an association with two SNPs on
2p15 (rs2710647, P=7.1×10−8; rs6545977, P=4.5×10−7), within the EHBP1 gene, close to that
recently reported by Gudmundsson et al8. rs2710647 is however, only weakly correlated with
the previously reported SNP rs721048, r2=0.19, and might reflect an independent association.
Two additional susceptibility loci on chromosomes 7 and 10 were identified in the GWAS by
Thomas et al9. We found supporting evidence for an association with rs10486567 on
chromosome 7 (JAZF1; stage 2 per-allele OR 1.05, 95%CI 0.92, 95%CI 0.85–1.00, combined
P=.00008), but only limited evidence for an association with rs4962416 on chromosome 10
(CTBP2; per-allele OR 1.05, 95%CI 0.98–1.13; P=.04).

The remaining 33 SNPs significant at P<10−6 were in 10 regions not previously associated
with PrCa. Multiple logistic regression analysis was used to define a minimal subset of 12
independently significant SNPs, such that the remaining SNPs were not significant after
adjustment for these SNPs. The strength of these associations in stage 2 was not substantially
affected by principal components adjustment (Supplementary Table 3). These 12 SNPs were
then subjected to further replication analysis in a third stage, involving 16,229 cases and 14,821
controls from 21 studies participating in the PRACTICAL Consortium (Supplementary Table
4).

Eight SNPs in 7 regions showed clear evidence of replication in stage 3 (P=.0002 or lower, in
each case in the same direction as in stages 1 and 2). In each case the combined P-trend over
all 3 stages reached P<10−7, with a range of P=1.6×10−8 to P=2.7×10−33. Two SNPs on
chromosome 4, rs17021918 and rs12500426, are correlated (r2 =0.5) but both showed
independent association after multiple logistic regression analyses (P=0.014 and P=0.0003 for
the effect of rs12500426 after adjustment for rs17021918 in stage 3 and overall, respectively;
P=.0002 and P=3.6×10−7 for the effects of rs17021918 after adjustment for rs12500426;
Supplementary Table 5). In addition to the above SNPs, an additional SNP on chromosome 8
showed more limited evidence of replication (P=.007 in stage 3, P=7.1×10−8 overall). It is
~90kb from rs1512268, which showed very clear evidence of association (P=3.4×10−30), but
the SNPs are in neighbouring linkage disequilibrium (LD) blocks and are only weakly
correlated (r2=0.03). rs12155172 on chromosome 7 showed weak evidence of association in
stage 3 (P=0.06, with an effect in the same direction as stages 1 and 2), but did not reach
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genome-wide significance in the combined dataset (P=8.8×10−6). Thus, this locus may harbour
a susceptibility allele, but further large case-control studies will be required to confirm or refute
this finding. For the remaining 2 loci, on chromosomes 12 and 16, there was no evidence of
association in stage 3. We conclude that these two loci were probably false positive associations
in stages 1 and 2.

We are able to compare our results with those from from the Cancer Genetic Markers of
Susceptibility (CGEMS) PrCa study, a GWAS of 1,117 PrCa cases and 1,105 controls that
utilized the same genotyping platform as our GWAS. Of the 9 SNPs that reached genome-wide
significance in our study, 8 were typed in CGEMS, and all had an estimated OR in the same
direction as our study (Supplementary Table 6). Only two of the SNPs were nominally
significant in CGEMS (rs5759167; P=.0035, and rs7679673; P=.014). However, in all cases
the estimated the 95% confidence interval for per-allele OR from the CGEMS study contained
our estimate. This suggests that the failure to replicate association of some of these loci in
CGEMS may be related to the relatively smaller size of the CGEMS stage 1.

All but two of the SNPs associated with PrCa risk exhibit an association with allele dose
consistent with a log-additive model, as observed for most common cancer susceptibility
alleles. rs12621278 on chromosome 2 exhibits a strong dose response, with an odds ratio (OR)
in homozygotes (0.35, 95%CI 0.24–0.52) being smaller than would be expected under a log-
additive model (P=.0076). rs17021918 on chromosome 4 showed no difference in risk between
heterozygotes and homozygotes (P=.023 compared with a log-additive model).

There was no evidence for a difference in the per-allele ORs among European, Asian and
African-American populations (Figure 2), with the exception of rs12500426, on chromosome
4, which exhibited an association in Europeans but not in Asian or African-American studies
(P=.046 for heterogeneity in the OR by population); and rs7679673, on chromosome 4, for
which the association in European and Asian populations was not observed in African-
Americans (P=.032). These differences might reflect differences in the LD structure and the
frequency of the causal variant(s) in different populations. There was no evidence of
heterogeneity in the per-allele ORs in European and African-American studies for any SNP
and only weak evidence of heterogeneity for two SNPs in Asian studies (Supplementary Table
7). We also found no marked differences in the per-allele ORs between studies based on
populations where PSA screening was prevalent (studies in the US, and the ProtecT study in
the UK) and those in which screening was less common (Supplementary Table 8).

The controls in stage 1 of our GWAS were selected for low Prostate Specific Antigen (PSA)
levels, and this may have led to the preferential selection of SNPs associated with PSA
levels10, 11. We were able to examine the associations between genotypes and serum PSA
levels in 1,585 control samples from the ProtecT study in stage 2 of our scan (Supplementary
Table 9). Two SNPs, rs17021918 (chromosome 4) and rs1512268 (chromosome 8) showed
weak association with PSA levels, in the same direction as the PrCa association (P=.043 and
P=.037 respectively). Both SNPs, however, showed very strong evidence of association in all
three stages, and we conclude that none of the associations are likely to be mediated simply
through associations with PSA level.

Data on Gleason score were available for 7,855 PrCa cases from 14 studies. There was no
difference in the OR for cases with high/intermediate grade disease (Gleason score ≥7) versus
low grade disease (Gleason score <7), for any of the associated SNPs (Supplementary Table
10). This consistency (also seen for the previously identified loci1) suggests that most
susceptibility loci identified to date modulate the early stages of disease development rather
than progression.
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For 2 of the SNPs, rs12621278 on chromosome 2 (P= 1.1×10−5) and rs7127900 on
chromosome 11 (P=.006), the per-allele OR varied with age, with a higher OR at younger ages
(Supplementary Table 11). One SNP, rs7679673, also exhibited a stronger association when
analyses were restricted to cases with a family history of PrCa (P=.02; Supplementary Table
12).

The associated SNPs identified in the second stage of our GWAS lie in LD blocks that include
several plausible causative genes (see Figure 1 for candidate gene list and Supplementary Note
for detail). Particularly notable are rs12621278 on 2q31, which is in intron 1 of ITGA6, the
gene encoding integrin alpha 6, and rs2928679 and rs1512268 (90kb apart on 8p21). rs2928679
lies 10kb downstream of NKX3.1, which codes for an androgen-regulated homeobox protein
NKX3.1 which is in the HDAC1 pathway.

Most of the per-allele ORs estimated for these variants in this study population were modest,
ranging from 1.08–1.28 fold. We found no further loci with associations as strong as the SNPs
on 8q or the MSMB locus, as would be expected since the power to detect these loci in our first
analysis was already high. Nevertheless, there are now more than 20 loci conferring ORs >1.1
for PrCa, more than for all other cancer types. We estimate that the power to detect these
associations in this experiment varied from >80% (for rs1512268 and rs7127900) to <1% (for
rs1465618, rs12155172 and rs2928679; Supplementary Table 13). This strongly suggests that
additional loci of similar magnitude remain to be identified. Mapping of such loci will require
the synthesis and follow-up of larger GWAS datasets. We have demonstrated that we have
power to confirm such loci using the PRACTICAL Consortium.

Based on an overall two-fold familial relative risk to first-degree relatives of PrCa cases, and
on the assumption that the SNPs combine multiplicatively, the new loci reported here together
explain approximately 4.3% of the familial risk of PrCa. Including the previously reported loci,
approximately 21.5% of familial risk in PrCa may now be explained. Under this model, the
top 10% of the population at highest risk has a relative risk approximately 2.3-fold greater than
the average risk in the general population, while the top 1% has an estimated 3-fold increased
relative risk. In contrast, the individuals classified at the bottom 1% of genetic risk according
to this model are estimated to have a relative risk of about one-fifth of the population average.
Such risk prediction may have implications for targeted screening and prevention. Moreover,
the associations we have found using tagSNPs may represent stronger associations with the
causal variants. If so, the overall contribution of the causal variants will be greater.
Resequencing of these regions, further genotyping and functional analyses will be required to
identify the genetic variants responsible for each risk locus.

Methods
Samples

PrCa cases and controls used in stage 1 of the GWAS have been described previously1. PrCa
cases and controls for stage 2 (Figure 1) were selected from studies in the UK and Australia.
UK cases were drawn from the UK Genetic Prostate Cancer Study (UKGPCS). UKGPCS
includes cases PrCa cases that were either diagnosed at age ≤60 years (n=341) and/or those
that had a first or second degree family history of prostate cancer (n=220), recruited from
urologists throughout the UK, and a series of cases recruited from PrCa clinics in the Urology
Unit at The Royal Marsden NHS Foundation Trust over a 14 year period. UK controls were
identified through two sources. Six hundred and fifty-six controls were drawn from the
UKGPCS study (Prostate Cancer Research Foundation Study component) and were
geographically, ethnically and age matched to the UKGPCS young onset cases. They had no
family or personal history of PrCa. The remaining controls (n=1636) were selected from men
in the ProtecT (Prostate testing for cancer and Treatment) study27. ProtecT is a national study
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of community-based PSA testing and a randomised trial of subsequent PrCa treatment.
Approximately 110,000 men between the ages of 50 and 69 years, (with a small set of men
aged 45–49 years from one centre), were ascertained through general practices in nine regions
in the UK. For this study we selected as controls men who had a PSA of <10ng/ml and negative
prostate biopsies. Men with PSA ≥3ng/ml were excluded if they had a positive prostatic biopsy.
We excluded, from both cases and controls, men who reported to be non-white. The majority
of men in the UK are diagnosed via a clinical presentation; amongst the cases in this study
100% of those from the ProtecT study were diagnosed through asymptomatic PSA screening.

The Australian cases were ascertained from three studies28–30: (i) a population-based series
of PrCa cases identified from the Victorian Cancer Registry since 1999, diagnosed at <56 years
(Early Onset Prostate Cancer Study, EOPCFS; n=631); (ii) a population-based case-control
study consisting of cases diagnosed in Melbourne and Perth (Risk Factors for Prostate Cancer
Study, RFPCS; n=702). Cases were identified from the population cancer registries, with
histopathologically confirmed PrCa, excluding tumors with Gleason scores of < 5, and
diagnosed at < 70 years with sampling stratified by age at diagnosis and (iii) a prospective
cohort study of 17,154 men aged 40 to 69 years at recruitment in 1990–4 (Melbourne
Collaborative Cohort Study, MCCS; n=378). Controls were selected from the RFPCS study,
in which they were identified through government electoral rolls and frequency matched to the
age distribution of the RFPCS cases (n=667), together with a random sample from the MCCS
cohort (n=981).

Stage 3 included samples from 21 PrCa case-control studies from groups in the PRACTICAL
Consortium (Supplementary Table 4).

All studies were approved by the appropriate ethics committees.

Genotyping
Stage 2 genotypes were generated using an Illumina iSELECT array. SNPs were selected on
the basis of the stage 1 results to include those with (a) a 1df P-trend <.059 (n= 34,484) and
(b) a 2df genotype test P<.01 (n=2,202). We also included (c) all SNPs from the 1M array in
LD blocks defined around “hits” from stage 1, defined as a SNP with P-trend <.0001; (d) all
SNPs from the Illumina 1M array on 8q24; (e) all SNPs from the 550k array in the HLA region
and (f) all SNPs significant in the CGEMS GWAS with P-trend <.01. We also included a
further set of SNPs of interest in collaboration with CGEMS group (these were not considered
in this paper; results to be reported separately). For analysis, we utilized samples on which
genotypes could be called for at least 97% of SNPs at a confidence score of ≥0.25. Data were
generated on 43,671 of 47,120 SNPs.

To identify close relatives we computed identity-by-state (IBS) probabilities for all pairs. We
identified 93 cryptic duplicate samples (or monozygotic twins) or probable brothers (IBS
>0.86). In each case we excluded the individual with the lower call rate. By computing IBS
scores between participants and individuals in HapMap and using multi-dimensional scaling,
we identified 252 individuals who appeared to have significant Asian or African ancestry
(approximately >10% non-European ancestry). We removed 14 cases with a significant level
of heterozygosity on X (16–39%; including 3 known cases of Klinefelter’s syndrome). After
these exclusions, 3,650 cases and 3,940 controls were used in the final analysis of stage 2.

We filtered out all SNPs with a call rate <95%, a minor allele frequency in controls of <1%,
or whose genotype frequency in controls departed from Hardy-Weinberg equilibrium at p<.
00001. After these exclusions, we analyzed 43,671 SNPs, of which 42,186 were genotyped in
both stage 1 and stage 2. Duplicate concordance was 99.998%.
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In stage 3, genotyping of samples from all but one study site was performed by 5′ exonuclease
assay (Taqman™) using the ABI Prism 7900HT sequence detection system according to the
manufacturer’s instructions. Primers and probes were supplied directly by Applied Biosystems
as Assays-By-Design™. The Queensland site used the iPlex Sequenom MassArray® system.
Ten of the 12 SNPs worked well with the initial assay; one (rs12155172) had to be redesigned
and one (rs4782780) had to be replaced by a proxy SNP (rs11861609, r2=0.93) for all groups
except Queensland. These latter two SNPs were therefore only run by 8 groups (Supplementary
Table 4).

Assays at all sites included at least two negative controls and 2–5% duplicates per plate. Quality
control guidelines were followed by all the participating groups as previously described31. We
excluded individuals that were not typed for at least 80% of the SNPs attempted. Data on a
given SNP for a given site were also excluded if they failed QC criteria, which necessitated: a
call rate >95%, no deviation from Hardy-Weinberg equilibrium in controls at P<.00001 and a
<2% discordance between genotypes in duplicate samples. Cluster plots were re-examined
centrally where necessary. Overall, 12 site/SNP combinations were excluded.

Statistical methods
We assessed associations between each SNP and PrCa at stage 2 using a 1df Cochran-Armitage
trend test and a general 2df chi-squared test. Inflation in the chi-squared statistic was assessed
using the genomic control approach; we derived an inflation factor (λ) by dividing the median
of the lowest 90% of the 1df statistics by the 45% percentile of a 1df chi-squared distribution
(0.357). This cutoff was used to avoid inclusion of SNPs likely to be associated with risk.
Analyses were stratified by country and, within Australia, by study (MCCS and EOPCS/
RFPCS). This stratification was made because the MCCS were known to be oversampled for
individuals of Southern Europe ancestry, and because this stratification materially reduced the
overdispersion. To further assess population structure, we performed principal components
analysis using 15,363 uncorrelated SNPs (r2<0.1). The first component was strongly related
to stratum (MCCS vs. EOPCS/RFPCS vs. UK; Supplementary Figure 2). Addition of up to
five principal components as covariates made no difference to the inflation, after adjustment
for stratum, and we therefore chose not to use the principal components in the primary analysis,
to preserve consistency with stage 3. However, subsequent adjustment for the SNPs reaching
genome-wide significance made no material difference to the strength of the associations or
significance levels. SNPs were selected for evaluation in stage 3 on the basis of a significance
level of P<10−6 based on a 1df trend test. Multiple logistic regression was used to define the
minimal set of SNPs that showed evidence of association at P<.05, after adjustment for other
SNPs.

In stage 3, we stratified analyses by study and racial/ethnic group (white, African-American,
south-east Asian, Latino and Hawaiian). Where <100 individuals were recorded in a minority
ethnic group, these individuals were excluded. The Mayo Clinic study genotyped multiple
cases for the same family; we included only one case per family at random in the analysis.
After exclusions, analyses were based on 16,229 PrCa cases and 14,821 controls from stage
3.

ORs and confidence limits were estimated using unconditional logistic regression, stratified
by study and racial/ethnic group. In the text we have reported the combined tests of association
over all three stages, but have emphasized the OR estimates from stage 3, to minimize the
effect of “winner’s curse”. Tests of homogeneity of the ORs across strata were assessed using
likelihood ratio tests. The associations between genotype and family history and Gleason score
were assessed using a case-only analysis; Gleason score was analysed both using the binary
endpoint of Gleason score ≥ 7 and as an ordinal variable, by polytomous regression.
Modification of the ORs by age was assessed using a case-only analysis, assessing the
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association between age and SNP genotype in the cases using polytomous regression. The
associations between SNP genotypes and PSA level were assessed using linear regression, after
log-transformation of PSA level to correct for skewness. Analyses were performed in R
(principally using SNPMatrix32) and Stata.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Summary of experimental design and results. Numbers quoted are after QC (see Online
Methods).
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Figure 2.
Forrest plots for the 12 SNPs replicated in stage 3. Squares represent the estimated per-allele
odds ratio (OR) for each study. Lines indicate the 95% confidence interval. Diamonds represent
the OR estimates and confidence limits for the subgroups indicated. The SNPs rs4782780 and
rs11861609 are highly correlated and only one was typed in any study. The OR is shown for
the SNP typed in each study (see Online Methods).
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