274 research outputs found

    How does our motor system determine its learning rate?

    Get PDF
    Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data. We conclude that our brain does not apply state estimation to determine the optimal planning correction for every individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level of error-signal reliability

    A Precision Measurement of the Lambda_c Baryon Mass

    Full text link
    The Λc+\Lambda_c^+ baryon mass is measured using Λc+→ΛKS0K+\Lambda_c^+\to\Lambda K^0_S K^+ and Λc+→Σ0KS0K+\Lambda_c^+\to\Sigma^0 K^0_S K^+ decays reconstructed in 232 fb−1^{-1} of data collected with the BaBar detector at the PEP-II asymmetric-energy e+e−e^+e^- storage ring. The Λc+\Lambda_c^+ mass is measured to be 2286.46±0.14MeV/c22286.46\pm0.14\mathrm{MeV}/c^2. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.Comment: 14 pages, 8 postscript figures, submitted to Phys. Rev.

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±→J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0→J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+e−e^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±→J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×10−5(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0→J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×10−5(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×10−6<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett

    Search for the rare leptonic decay B+->mu(+)nu(mu) (vol 92, art no 221803, 2004)

    Get PDF
    Corrections to the article published in the same review - same title (vol 92, art no 221803, 2004

    Search for the rare leptonic decay B+->mu(+)nu(mu) (vol 92, art no 221803, 2004)

    Get PDF

    Measurements of branching fractions and CP-violating asymmetries in B meson decays to charmless two-body states containing a K-0

    Get PDF
    We present measurements of branching fractions and CP-violating asymmetries in decays of B mesons to two-body final states containing a K-0. The results are based on a data sample of approximately 88x10(6) Y(4S)-->B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We measure B(B+-->K(0)pi(+))=(22.3+/-1.7+/-1.1)x10(-6), B(B-0-->K(0)pi(0))=(11.4+/-1.7+/-0.8)x10(-6), B(B+-->(K) over bar K-0(+))K-0(K) over bar (0))K(0)pi(+))=-0.05+/-0.08+/-0.01 and A(CP)(B-0-->K(0)pi(0))=0.03+/-0.36+/-0.11

    Measurements of branching fractions and dalitz distributions for B-0 ->(DK0)-K-(*)+/-pi(-/+) decays

    Get PDF
    We present measurments of the branching fractions for the three-body decays B-0 -> D((*) -/+)K(0)pi(+/-) and their resonant submodes B0 -> D(*)K-/+*(+/-) usinga sample of approximately 88 x 10(6) B (B) over bar pairs collected by the BABER detector at the SLAC PEP-II assymetric energy storage ring. We measure: B(B-0-> D(-/+)K(0)pi(+/-)) = (4.9 +/- 0.7(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*(-/+)K(0)pi(+/-)) = (3.0 +/- 0.7(stat) +/- 0.3(syst)) x 10(-4), B(B-0 -> D-/+K*(+/-)) = (4.6 +/- 0.6(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*K-/+*(+/-) = (3.2 +/- 0.6(stat) +/- 0.3(syst)) x 10(-4). From these measurements we determine the fractions of resonant events to be f(B0 -> D+/-K*(-/+)) = 0.63 +/- 0.08(stat) +/- 0.04(syst) and f(B-0 -> D*K-/+*(+/-)) = 0.72 +/- 0.14(stat) +/- 0.05(syst)

    Measurement of branching fractions and resonance contributions for B-0 ->(D)over-bar(0)K(+)pi(-) and search for B-0 ->(DK+)-K-0 pi(-) decays

    Get PDF
    Using 226x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B-0->(D) over bar (0)K(+)pi(-), excluding B-0-> D*-K+, to be B(B-0->(0)K(+)pi(-))=(88 +/- 15 +/- 9)x10(-6). We observe B-0->(D) over bar K-0(*)(892)(0) and B-0-> D-2(*)(2460)K--(+) contributions. The ratio of branching fractions B(B-0-> D*-K+)/B(B-0-> D(*-)pi(+))=(7.76 +/- 0.34 +/- 0.29)% is measured separately. The branching fraction for the suppressed mode B-0-> D(0)K(+)pi(-) is B(B-0-> D(0)K(+)pi(-))< 19x10(-6) at the 90% confidence level

    Measurements of the branching fraction and CP-violation asymmetries in B-0 -> f(0)(980)K-S(0)

    Get PDF
    We present measurements of the branching fraction and CP-violating asymmetries in the decay B-0-->f(0)(980)K-S(0). The results are obtained from a data sample of 123x10(6) Y(4S)-->B (B) over bar decays. From a time-dependent maximum likelihood fit, we measure the branching fraction B(B-0-->f(0)(980)(-->pi(+)pi(-))K-0)=(6.0+/-0.9+/-0.6+/-1.2)x10(-6), the mixing-induced CP violation parameter S=-1.62(-0.51)(+0.56)+/-0.09+/-0.04, and the direct CP violation parameter C=0.27+/-0.36+/-0.10+/-0.07, where the first errors are statistical, the second systematic, and the third due to model uncertainties. We measure the f(0)(980) mass and width to be m(f0)(980)=(980.6+/-4.1+/-0.5+/-4.0) MeV/c(2) and Gamma(f0)(980)=(43(-9)(+12)+/-3+/-9) MeV/c(2), respectively

    Measurement of branching fractions and charge asymmetries in B-+/-->rho(+/-)pi(0) and B-+/-->rho(0)pi(+/-) decays, and search for B-0 ->rho(0)pi(0)

    Get PDF
    We present measurements of branching fractions and charge asymmetries in B-meson decays to rho(+)pi(0), rho(0)pi(+), and rho(0)pi(0). The data sample comprises 89x10(6) Y(4S)-->B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions B(B+-->rho(+)pi(0))=[10.9+/-1.9(stat)+/-1.9(syst)]x10(-6) and B(B+-->rho(0)pi(+))=(9.5+/-1.1+/-0.9)x10(-6), and we set a 90% confidence-level upper limit B(B-0-->rho(0)pi(0))<2.9x10(-6). We measure the charge asymmetries A(CP)(rho+)pi(0)=0.24+/-0.16+/-0.06 and A(CP)(rho0)pi(+)=-0.19+/-0.11+/-0.02
    • …
    corecore