232 research outputs found

    Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity

    Full text link
    "This is the peer reviewed version of the following article: Vallespir, Francisca, Óscar RodrĂ­guez, Juan A CĂĄrcel, Carmen RossellĂł, and Susana Simal. 2019. Ultrasound Assisted Low-temperature Drying of Kiwifruit: Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity. Journal of the Science of Food and Agriculture 99 (6). Wiley: 2901 9. doi:10.1002/jsfa.9503, which has been published in final form at https://doi.org/10.1002/jsfa.9503. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Background: Low-temperature drying is considered to be a promising technique for food processing. It preserves thermolabile compounds and might be intensified by acoustic assistance. The effect of acoustic assistance (20.5 kW m(-3)) during low-temperature drying of kiwifruit (at 5, 10 and 15 degrees C, and 1 m s(-1)) on drying kinetics, bioactive compounds (such as ascorbic acid, vitamin E, and total polyphenols), and antioxidant activity was studied. Results: Drying time was shortened by 55-65% when using power ultrasound. A diffusion model was used to evaluate the drying kinetics. The effective diffusion coefficient increased by 154 +/- 30% and the external mass transfer coefficient increased by 158 +/- 66% when ultrasound was applied during drying, compared with drying without ultrasound application. With regard to bioactive compounds and antioxidant activity, although samples dried at 15 degrees C presented significantly higher (P < 0.05) losses (39-54% and 57-69%, respectively) than samples dried at 5 degrees C (14-43% and 23-50%, respectively) when ultrasound was not applied, the application of ultrasound during drying at 15 degrees C significantly reduced (P < 0.05) those losses in all quality parameters (15-47% and 47-58%, respectively). Conclusion: Overall, low-temperature drying of kiwifruit was enhanced by acoustic assistance preserving bioactive compounds and antioxidant activity, especially at 15 degrees C. (c) 2018 Society of Chemical IndustryThe authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA) and co-financed with ERDF funds (RTA2015-00060-C04-03 and RTA2015-00060-C04-02 projects) and the Spanish Government (MINECO) for the BES-2013-064131 fellowship.Vallespir, F.; RodrĂ­guez, O.; Carcel, JA.; RossellĂł, C.; Simal, S. (2019). Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture. 99(6):2901-2909. https://doi.org/10.1002/jsfa.9503S29012909996Soquetta, M. B., Stefanello, F. S., Huerta, K. da M., Monteiro, S. S., da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit ( Actinidia deliciosa ). Food Chemistry, 199, 471-478. doi:10.1016/j.foodchem.2015.12.022Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. doi:10.1016/j.foodchem.2008.08.025FernĂĄndez-Sestelo, A., de SaĂĄ, R. S., PĂ©rez-Lamela, C., Torrado-Agrasar, A., RĂșa, M. L., & Pastrana-Castro, L. (2013). Overall quality properties in pressurized kiwi purĂ©e: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science & Emerging Technologies, 20, 64-72. doi:10.1016/j.ifset.2013.06.009Santacatalina, J. V., RodrĂ­guez, O., Simal, S., CĂĄrcel, J. A., Mulet, A., & GarcĂ­a-PĂ©rez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003Vallespir, F., CĂĄrcel, J. A., Marra, F., Eim, V. S., & Simal, S. (2017). Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology, 11(1), 72-83. doi:10.1007/s11947-017-1999-8Ozuna, C., CĂĄrcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008RodrĂ­guez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & RossellĂł, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Garcia-Perez, J. V., Carcel, J. A., Riera, E., RossellĂł, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533CĂĄrcel, J. A., GarcĂ­a-PĂ©rez, J. V., Riera, E., RossellĂł, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14GarcĂ­a-PĂ©rez, J. V., Carcel, J. A., Mulet, A., Riera, E., & Gallego-Juarez, J. A. (2015). Ultrasonic drying for food preservation. Power Ultrasonics, 875-910. doi:10.1016/b978-1-78242-028-6.00029-6RodrĂ­guez, Ó., Eim, V. S., Simal, S., Femenia, A., & RossellĂł, C. (2011). Validation of a Difussion Model Using Moisture Profiles Measured by Means of TD-NMR in Apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542-552. doi:10.1007/s11947-011-0711-7Moraga, G., MartĂ­nez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s1052623496303470Fernandes, F. A. N., Rodrigues, S., CĂĄrcel, J. A., & GarcĂ­a-PĂ©rez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500-1508. doi:10.1016/j.foodchem.2009.01.078Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of «Antioxidant Power»: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292Apak, R., GĂŒĂ§lĂŒ, K., ÖzyĂŒrek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine:  CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. doi:10.1021/jf048741xRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3Santacatalina, J. V., Soriano, J. R., CĂĄrcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010Darıcı, S., & ƞen, S. (2015). Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat and Mass Transfer, 51(8), 1167-1176. doi:10.1007/s00231-014-1487-xGarcĂ­a-PĂ©rez, J. V., RossellĂł, C., CĂĄrcel, J. A., De la Fuente, S., & Mulet, A. (2006). Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Diffusion in Solids and Liquids, 563-574. doi:10.4028/3-908451-36-1.563Gamboa-Santos, J., Montilla, A., CĂĄrcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & CĂĄrcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0Santacatalina, J. V., Contreras, M., Simal, S., CĂĄrcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027RodrĂ­guez, Ó., Eim, V., RossellĂł, C., Femenia, A., CĂĄrcel, J. A., & Simal, S. (2017). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 98(5), 1660-1673. doi:10.1002/jsfa.8673Sivakumaran, S., Huffman, L., Sivakumaran, S., & Drummond, L. (2018). The nutritional composition of ZespriÂź SunGold Kiwifruit and ZespriÂź Sweet Green Kiwifruit. Food Chemistry, 238, 195-202. doi:10.1016/j.foodchem.2016.08.118Pal, R. S., Kumar, V. A., Arora, S., Sharma, A. K., Kumar, V., & Agrawal, S. (2015). Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Brazilian Archives of Biology and Technology, 58(2), 262-271. doi:10.1590/s1516-8913201500371Ball, G. F. M. (2005). Vitamins In Foods. doi:10.1201/9781420026979Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001Izli, N., Izli, G., & Taskin, O. (2016). Drying kinetics, colour, total phenolic content and antioxidant capacity properties of kiwi dried by different methods. Journal of Food Measurement and Characterization, 11(1), 64-74. doi:10.1007/s11694-016-9372-6Fernandes, F. A. N., Rodrigues, S., GarcĂ­a-PĂ©rez, J. V., & CĂĄrcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., BarrajĂłn-CatalĂĄn, E., & GarcĂ­a-PĂ©rez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001Moreno, C., Brines, C., Mulet, A., RossellĂł, C., & CĂĄrcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890SzadziƄska, J., ƁechtaƄska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030GonzĂĄlez-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., RossellĂł, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047kLeontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y.-S., Katrich, E., 
 Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chemistry, 196, 281-291. doi:10.1016/j.foodchem.2015.08.12

    Molecular Recognition by Pillar[5]arenes Evidence for Simultaneous Electrostatic and Hydrophobic Interactions

    Get PDF
    CTQ2017-84354-P (GR 2007/085ED431C2018/42-GRC)The formation of inclusion complexes between alkylsulfonate guests and a cationic pil-lar[5]arene receptor in water was investigated by NMR and ITC techniques. The results show the formation of host-guest complexes stabilized by electrostatic interactions and hydrophobic effects with binding constants of up to 107 M−1 for the guest with higher hydrophobic character. Structurally, the alkyl chain of the guest is included in the hydrophobic aromatic cavity of the macrocycle while the sulfonate groups are held in the multicationic portal by ionic interactions.publishersversionpublishe

    Pseudophase Model in Microemulsions

    Get PDF
    The kinetic behaviours in microemulsions can be easily modelled using an extension of the pseudophase model previously developed for micellar catalysis. This model considers that the microheterogeneous media can be considered as the sum of different conventional reaction media, where the reagents are distributed and in which the reaction can occur simultaneously. The reaction rate observed in the microheterogeneous system will be the sum of the velocities in each one of the pseudophases. This use can be considered as an extension of the pseudophase model, which has been developed for the quantitative analysis of nitrosation reactions in AOT/isooctane/water microemulsions and has been applied successfully in the literature in a large variety of chemical reactions

    Design and synthesis of non-peptide mimetics mapping the immunodominant myelin basic protein (MBP83–96) Epitope to function as T-cell receptor antagonists

    Get PDF
    Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP83–96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP83–96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP83–99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19. These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS

    A HPLC‐DAD method for identifying and estimating the content of fucoxanthin, ÎČ‐carotene and chlorophyll a in brown algal extracts

    Get PDF
    Seaweeds are photosynthetic organisms that have high contents of pigments. The coloration of each alga is defined by the content and combination of pigments synthesized, which varies among species and environmental conditions. The most abundant pigments in algae are chlorophylls and carotenoids, lipophilic molecules that can be used as natural colorants and have high acceptance by consumers. In this work, a simple and short hands-on time HPLC-DAD method for identifying and estimating the pigment content of algal extracts, specifically fucoxanthin, ÎČ-carotene and chlorophyll a was carried out. Using this optimized method, a pigment screening was performed on the ethanolic extracts obtained by ultrasound-assisted extraction from nine brown algal from the Atlantic coastline: Ascophyllum nodosum, Bifurcaria bifurcata, Fucus spiralis, Himanthalia elongata, Laminaria saccharina, Laminaria ochroleuca, Pelvetia canaliculata, Sargassum muticum and Undaria pinnatifida. HPLC results permitted to highlight L. saccharina and U. pinnatifida as promising sources of these three target pigments containing a total amount of 10.5 – 11.5 mg per gram of dry weight. Among them, the most abundant one was fucoxanthin, an added-value compound with a high potential to be commercially exploited by different industries, such as the food, cosmetic, and pharmaceutical sectors.The research leading to these results was supported by MICINN sup- porting the RamĂłn y Cajal grant for M.A. Prieto (RYC-2017-22891), the FPU grant for A. Carreira-Casais (FPU2016/06135); and by Xunta de Galicia for supporting the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096). The research leading to these results was sup- ported by the European Union through the “NextGenerationEU ”pro- gram supporting the “Margarita Salas ”grant awarded to P. Garcia- Perez. Authors are grateful to AlgaMar company ( www.algamar.com ) for the collaboration and algal material provision. This research was funded by the Ibero-American Program on Science and Technology (CYTED —AQUA-CIBUS, P317RT0003), the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) that supports the work of C. Lourenço- Lopes. The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consor- tium. The project SYSTEMIC Knowledge hub on Nutrition and Food Se- curity, has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint ac- tion of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 un- der the ERA-NET ERA-HDHL (n°696295). The authors would like to thank the EU and FCT for funding through the project PTDC/OCE- ETA/30240/2017- SilverBrain - From sea to brain: Green neuropro- tective extracts for nanoencapsulation and functional food production (POCI-01-0145-FEDER-030240).info:eu-repo/semantics/publishedVersio

    Optimization of the Extraction Process to Obtain a Colorant Ingredient from Leaves of Ocimum basilicum var. Purpurascens

    Get PDF
    Heat-Assisted Extraction (HAE) was used for the optimized production of an extract rich in anthocyanin compounds from Ocimum basilicum var. purpurascens leaves. The optimization was performed using the response surface methodology employing a central composite experimental design with five-levels for each of the assessed variables. The independent variables studied were the extraction time (t, 20–120 min), temperature (T, 25–85 C), and solvent (S, 0–100% of ethanol, v/v). Anthocyanin compounds were analysed by HPLC-DAD-ESI/MS and the extraction yields were used as response variables. Theoretical models were developed for the obtained experimental data, then the models were validated by a selected number of statistical tests, and finally, those models were used in the prediction and optimization steps. The optimal HAE conditions for the extraction of anthocyanin compounds were: t = 65.37 3.62 min, T = 85.00 1.17 C and S = 62.50 4.24%, and originated 114.74 0.58 TA mg/g of extract. This study highlighted the red rubin basil leaves as a promising natural matrix to extract pigmented compounds, using green solvents and reduced extraction times. The extract rich in anthocyanins also showed antimicrobial and anti-proliferative properties against four human tumor cell lines, without any toxicity on a primary porcine liver cell line.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Program PT2020 for financial support to CIMO (UID/AGR/00690/2013), Lillian Barros and Ricardo C. Calhelha contracts. The authors are also grateful to the Interreg España-Portugal for financial support through the project 0377_Iberphenol_6_E). This work is funded by the European Regional Development Fund (ERDF) through the Regional Operational Program North 2020, within the scope of Project Mobilizador Norte-01-0247-FEDER-024479: ValorNaturalÂź. Authors are also grateful to Ministry of Education, Science and Technological Development, Republic of Serbia, grant No. 173032. The authors thank the GAIN (Xunta de Galicia) for financial support (P.P. 0000 421S 140.08) to Miguel A. Prieto by a post-doctoral (modality B) grant.info:eu-repo/semantics/publishedVersio

    Camellia japonica flowers as a source of nutritional and bioactive compounds

    Get PDF
    In recent decades, plants have strengthened their relevance as sources of molecules potentially beneficial for health. This underpinning effect also arises from the extensive research that has been conducted on plants that are typically undervalued, besides being scarcely used. This is the case with Camellia japonica in Galicia (NW Spain), where, despite its abundance, it is exclusively used for ornamental purposes and has been studied only for its proximate composition. Thus, the present study was conducted on several additional parameters in the flowers of eight C. japonica varieties. Our results show that camellia has a high nutritional value, with carbohydrates as the most abundant macronutrients followed by a moderate protein content (4.4–6.3 g/100 g dry weight) and high levels of polyunsaturated fatty acids (especially ω-3 fatty acids, which represent 12.9–22.7% of the total fatty acids), raising its potential for use for nutritional purposes. According to the thermochemical characterization and elemental composition of camellia, the raw material has poor mineralization and low nitrogen content, but high percentages of volatile matter and high carbon-fixation rates, making it a promising alternative for biofuel production. Furthermore, preliminary analysis reveals a high concentration of different bioactive compounds. As a result of these findings, camellias can be used as food or functional ingredients to improve the nutritional quality of food formulations.Agencia Estatal de InvestigaciĂłn | Ref. RYC-2017-22891Fundação para a CiĂȘncia e a Tecnologia | Ref. CEECIND/04479/2017Xunta de Galicia | Ref. ED481B-2021/152Xunta de Galicia | Ref. ED481A-2019/022

    Untargeted metabolomics and in vitro functional analysis unravel the intraspecific bioactive potential of flowers from underexplored Camellia japonica cultivars facing their industrial application

    Get PDF
    The Camellia genus comprises a vast array of underexplored medicinal plants that merit a systematic valorization to exploit their potential as natural sources of phytochemicals with associated health-promoting properties. In this work, flower extracts from eight poorly characterized Camellia japonica L. cultivars were subjected to polyphenol profiling through untargeted metabolomics combined with in vitro functional analysis. Anthocyanins, mostly represented by cyanidin 3-O-glycosides, flavones, and flavonols, were found as the major constituents of C. japonica flowers, together with hydroxycinnamic acids, tyrosols, alkylphenols, and stilbenes, which were detected for the first time in this species. The application of multivariate statistics revealed a flower colordependent fingerprint of C. japonica cultivars, featuring anthocyanins and other flavonoids as metabolite markers associated with color-flowered cultivars with respect to white-flowered ones. The accumulation of anthocyanins, especially reported in ‘Eugenia de Montijo’ flowers, was highly correlated with the cytotoxic and anti-inflammatory properties of the derived extracts, including AGS, Caco-2, and MCF7 cancer cell lines. Moreover, the flavones accumulation reported in ‘Carolyn Tuttle’ extracts was also associated with high rates of free-radical scavenging activity, as well as a potent cytotoxicity against the Caco-2 cell line. In general, C. japonica anthocyanin-enriched flower extracts were revealed as promising candidates for the industrial production of polyphenols with associated biological activities of high interest for critical sectors in the food, pharmaceutical, and cosmetic industries.The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A.-P. (RYC-2017–22891) and the Juan de la Cierva Formación grant for T.-O. (FJC2019–042549-I). The authors acknowledge Xunta de Galicia for funding the post-doctoral grant of L. C. (ED481B-2021/152) and the program EXCELENCIAED431F 2020/12, which supported the work by F.C. The authors are also grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2020), and national funding by FCT, P.I., through the institutional scientific employment program contract for L.-B. and R. C.-C. The work by P.G.-P. was financed by the Spanish Ministry of Universities under the application 33.50.460A.752 and by the European Union NextGenerationEU/PRTR through a Margarita Salas contract by the Universidade de Vigo.info:eu-repo/semantics/publishedVersio

    Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.)

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGBackground: The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the productivity in maize crops. Methods and results: The present investigation was carried out to select the best medium maturing inbred lines, among a set of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them in line × tester manner. Conclusion: Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present investigation may be exploited for heterosis breeding in filed corn. Key messages To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment the productivity but also improves the quality of hybrid/s

    Rubus ulmifolius Schott as a novel source of food colorant: extraction optimization of coloring pigments and incorporation in a bakery product

    Get PDF
    Color has been considered to be the flashiest attribute of foodstu s and researchers have shown a great interest in the extraction of pigmented compounds from vegetal products, with the purpose to provide alternative counterparts to the food industry; (2) Methods: This study aimed to explore Rubus ulmifolius Schott fruits as a potential source of anthocyanins, optimizing the extraction method, evaluating the bioactivity and incorporating the rich extract into a bakery food product; (3) Results: After the extraction optimization, results showed R. ulmifolius fruits to be a great source of anthocyanins, obtaining an amount of 33.58 mg AT/g E, with an extraction yield of 62.08%. The rich anthocyanin extract showed antitumor and antimicrobial potential in some tumor cell lines and strains, respectively, as well as the absence of toxicity; (4) Conclusions: The extract when incorporated in a bakery product showed a good coloring capacity, maintaining the nutritional value, revealing its use to be a great approach for replacing artificial colorants.This research was funded by the Foundation for Science and Technology (FCT, Portugal) and FEDER under Program PT2020 for financial support to CIMO (UID/AGR/00690/2019).L. Barros and R. Calhelha also thank the national funding by FCT, P.I.; through the institutional scientific employment program-contract for their contracts; Interreg España-Portugal for financial support through the project 0377_Iberphenol_6_E); and the European Regional Development Fund (ERDF) through the Regional Operational Program North 2020, within the scope of Project NORTE-01-0145-FEDER-023289: DeCodE and project Mobilizador Norte-01-0247-FEDER-024479: ValorNaturalŸ.info:eu-repo/semantics/publishedVersio
    • 

    corecore