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Introduction

Maize is one of the key cereals, which plays the major role 
in Indian agriculture, especially to meet the staple food, 
livestock feed, edible oil and biofuel demand of growing 
population and industry. Hybrids play crucial role in maize 
productivity, which not only enhance production but also 
alleviate food scarcity and nutrition requirement of the 
developing countries. Hybrid maize cultivars development 
needs selection of appropriate parents (inbred lines) which 
is the concealed of success in hybrid maize development. 
Identification of high yielding hybrids require careful selec-
tion of parents based on their combining ability and under-
lying genetic constituents of inbred lines [1].

The extent of enhancement of maize productivity not 
only depend on the genetic variability but also diversity of 
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Abstract
Background  The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there 
is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the 
productivity in maize crops.
Methods and results  The present investigation was carried out to select the best medium maturing inbred lines, among a set 
of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of 
its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL 
and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a 
wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 
16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them 
in line × tester manner.
Conclusion  Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, 
PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed 
epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present inves-
tigation may be exploited for heterosis breeding in filed corn.
Key messages  To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of 
maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment 
the productivity but also improves the quality of hybrid/s.
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the parental inbred lines involved in the cross combination, 
which ultimately determine the magnitude of heterosis. The 
power of heterosis by breeding filial one (F1) hybrids exhib-
iting superior vigor for plant growth and grain yield was 
first exploited in maize. Though the mystery of heterosis has 
been explored for over a century, but the underlying mecha-
nism remains insufficiently understood [2]. For the better 
exploitation of heterosis, systematic selection of parental 
lines followed by the identification of superior hybrid com-
binations plays crucial role. However, the extent of heterosis 
varies with the genetic distance of parents, mode of repro-
duction, nature of traits under investigation and prevailing 
environment in which parental lines perform well [3].

Execution of specific methodology is very important to 
identify suitable parental lines for hybrid breeding as dif-
ferent genetic approaches are available to identify diverse 
parents or to determine genetic distance among the geno-
types. With the advent of molecular markers, identification 
of genetic diversity followed by establishment of genetic 
relation has made easy to select the parents with exploit-
able genetic diversity. However, breeder should depend not 
only on the genetic diversity of the parents, as in different 
crops, contradictory results have been reported with respect 
to the relationship between genetic distance and heterosis 
[3]. This might be due to the fact that apart from the genetic 
diversity, heterosis is also dependent on the relevant consid-
erations of direction and magnitude of dominance, biologi-
cal feasibility and the type of gene action exhibited by the 
inbred lines involved in the hybrid combinations. On the 
other hand, the combining ability analyses for traits under 
investigation were also equally important to capture other 
variance, which explains the extent of heterosis and makes 
the parental selection much more effective. Hence, it was 
realized that the measures of both general combining ability 
(GCA) and specific combining ability (SCA) are necessary 
for the selection of parental lines to develop heterotic com-
binations [4].

In recent years researchers have used quantitative genet-
ics, physiology, and molecular approaches in an effort to 
understand the basis of heterosis [5]. But the explanation 
of the concept of heterosis is meaning less without under-
standing the genetic composition of parental lines used in 
the development of hybrids [6]. From the previous experi-
ences it was very clear that any single criterion adapted for 
the selection of inbred line would not yield potential inbred 
lines with high exploitable heterosis among them [7].

Therefore, the present investigation was emphasized to 
explore potential inbred parental lines based on holistic 
approach with genetic variability, combining ability and 
molecular diversity studies which could be help to frame 
the heterosis breeding program in field corn.

Materials and methods

Phenotypic selection of parental lines

A set of 118 stabilized maize inbred lines, which were 
derived from the diverse source of population and evalu-
ated with two rows each of genotypes along with reiterating 
high yielding checks at regular interval using augmented 
block design during 2016 and 2016–17 at ICAR-Regional 
Research Centre, Dharwad, Karnataka. These inbred lines 
were categorized into different maturity groups based on 
their flowering time. The Duncan multiple range test was 
used for selection, out of 118 inbred line, 16 top performing 
medium maturing inbred lines were selected based on yield 
per se and maturity (Supplementary Table 1).

The selected 16 inbred lines were evaluated in replicated 
trials under Randomised Complete Block Design (RCBD) 
with two rows each of test genotypes at ICAR-Indian Agri-
cultural Research Institute, New Delhi during 2017 and 
used for further investigation. The recommended package of 
practices was followed to raise a healthy crop. Data on grain 
yield component traits viz., cob length (CL) (cm), cob girth 
(CG) (mm), kernel row number (KRN) and kernel per row 
(KPR) were recorded along with grain yield (kg/ha) using 
standard methodology and data were analysed through SAS 
9.3v software (http://stat.iasri.res.in/sscnarsportal).

Heterotic QTL based molecular marker 
diversity in the parental lines

Heterotic QTL based markers with high LOD value (˃ 4) 
were selected and primer details were collected from Maize 
GDB (www.maizegdb.org). A total of 50 linked SSR mark-
ers (Supplementary Table  2) distributed across the differ-
ent chromosomes (1–10) were used for molecular diversity 
analysis. The genomic DNA of 16 parental lines was iso-
lated using CTAB (Cetyl-trimethyl ammonium bromide) 
method [8]. The PCR was performed with 1 unit of Taq 
DNA polymerase (GeneDireX, Inc.), 10X reaction buf-
fer (GeneDireX, Inc.), 0.1 mM dNTPs, 10 pmol/ µL each 
primer and 50 ng DNA template in a total reaction volume 
of 25 µL. The PCR amplification was carried out with initial 
denaturation at 94 °C for 5 min. followed by 35 cycles con-
sisting of denaturation at 94 °C for 30s, annealing at 55 °C 
for 30s, extension at 72 °C for 60s and a final extension of 
7 min. at 72 °C. The PCR amplified fragments were resolved 
o 3.5% (w/v) agarose gel (HiMedia) and the amplified prod-
ucts were scored the estimated polymorphism information 
content (PIC) values as per Anderson et al. 1993 [9]. The 
molecular data was subjected for diversity analysis using 
DARwin software [10].
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Development of hybrids and their 
evaluation

The inbred lines selected in the field experiment were clas-
sified as female (13) and male (three) parental lines based 
on their variability and molecular diversity. A set of 39 test 
cross hybrids were generated using these parental lines by 
following line × tester mating design at ICAR-Indian Agri-
cultural Research Institute, New Delhi, during 2017–18. 
The generated test cross hybrids were evaluated in RCBD 
with two replications at Regional Agricultural Research Sta-
tion, Vijayapura (16° 49’ N latitude, 75° 43’ E longitude and 
593 mean sea level) during 2018.

These hybrids were raised in paired rows of three-meter 
length with a spacing of 60 × 20 cm. The standard agronomi-
cal package of practices was followed to raise the healthy 
crops. The data was recorded using five randomly selected 
plants (from each entry/replication), competitive plants 
were tagged and numbered in the middle row to observe 
yield and other quantitative characters. Data were recorded 
on CL (cm), CG (cm), KRN, KPR and grain yield (kg/ha) 
at respective stages of growth and development of the crop. 
The software, TNAUSTAT was used to estimate the comb-
ing ability and other descriptive statistics [11].

Results

Genetic variability of parental lines

Analysis of variance of 16 inbred lines indicated wider 
variability and significant differences among each other 
for the trait under consideration (Table  1). The mean cob 
length recorded was 12.83 cm which ranged from 8.75 to 
16.05 cm. For cob girth average value was 35.47 mm and 
range was 26.25 to 41.35 mm. The KRN and KPR are the 
other related, complimenting and important yield attributing 
traits. For these characters (KRN and KPR) recorded mean 
value of 14 and 22, respectively with the range of 10–22 and 
12–31, respectively. The mean per se grain yield recorded 
was 2365  kg/ha which ranged from 1087 to 3113  kg/ha 
(Supplementary Table-3).

Molecular diversity of parental lines

The molecular diversity analysis was carried out using 
simple sequence repeat (SSR) markers, which is linked to 
yield and heterotic QTLs in maize. These linked markers 
(50 no.s) were used for polymorphic survey using a set of 
16 inbred lines to understand the molecular diversity among 
the lines. These markers found highly polymorphic among 
parental lines (Fig. 1). The polymorphic information con-
tent (PIC) value of these markers was > 0.5 with range of 
value 0.62–0.99 (Supplementary Table 4).

The cluster analysis using molecular profile generated by 
SSR markers, classified inbred lines into three distinct clus-
ters (Supplementary Fig. 1). Cluster I had eight inbred lines 
(PML 44, PML 93, PML 103, PML 111, PML 112, PML 
115, DML 1913 and DML 1336), cluster II had seven inbred 
lines (PML 45, PML 102, PML 109, PML 110, PML 113, 
PML 114 and PML 116) and the cluster III was mono-geno-
typic (PML 46). The clusters mean for the grain yield was 
2196.40 kg/ha, 2464.06 kg/ha and 3026.25 kg/ha, for Clus-
ter I, Cluster II and Cluster III respectively. Similarly, cluster 
mean for CL (13.55, 11.45, 16.05 cm), for CG (34.92, 36.57, 
31.50 mm) and for KRN (22.01, 19.36 and 30.38), respec-
tively were also recorded by these clusters (Supplementary 
Table 5). This indicated that the inbred lines belonging to 
these clusters have substantial genetic diversity.

Genetic variability of hybrids

The analysis of variance for morpho-physiological and yield 
related traits among 39 test hybrids obtained by the cross-
ing of 13 inbred lines with three testers, showed that the 
mean sum of squares due to the traits studied were highly 
significant, indicating the presence of substantial differ-
ences among the hybrids for all the studied traits (Table 2). 
Variance due to testers and crosses were highly significant 
differences.

Table 1  Analysis of variance for yield component traits of parental 
lines
Sources of variation MSS

DF Cob 
Girth

Cob 
Length

Kernel 
Per Row

Kernel 
Row 
Number

Replication 1 0.19 0.43 0.47 0.50
Genotypes 15 47.62** 9.10** 50.28** 12.23**
Error 15 0.18 0.05 2.44 1.03
DF: Degree of freedom, MSS: Mean sum of squares

Fig. 1  Gel image showing polymorphic survey among inbred lines
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Among the testers used, PML 46 and PML 93 had non-
significant GCA effect for KRN (-0.33 and − 0.12) and 
grain yield (0.12 and 0.12). However, PML 102, other 
inbred line used as tester, showed significant GCA effect 
for both KRN (0.45) and grain yield (-0.24) (Table 3). For 
KRN, the hybrids AH-4316 (PML109×PML93), AH-4304 
(PML110×PML46), AH-4305 (PML111×PML46), 
AH-4334 (PML114×PML102) and AH-4323 
(PML116×PML93) were recorded significant SCA effects 
in positive direction. In case of grain yield, the hybrid 
AH-4323 (PML116×PML93) is having the significant SCA 
effect followed by AH-4316 (PML109×PML93), AH-4304 
(PML110×PML46), AH-4305 (PML111×PML46) and 
AH-4334 (PML114×PML102) in positive direction 
(Table 4).

Combining ability of parental lines

General combining ability indicates the average perfor-
mance of the lines in a series of cross combination. Among 
the tested lines, the PML 116 is having the significant posi-
tive GCA effect for cob girth (0.61) followed by PML 110 
(0.59), PML 111 (0.57), PML 114 (0.53) and PML 109 
(0.46). For the KRN, the lines PML 116 is having the sig-
nificant positive GCA effect (1.28) followed by PML 110 
(1.15), PML 111 (1.01), PML 109 (0.85) and PML 114 
(0.82). Hence, these are good general combiners for cob 
girth and KRN traits. Similarly, PML 109, PML 110, PML 
111, PML 114, and PML 116 with significant GCA effects 
of 0.38, 0.46, 0.41, 0.36 and 0.56 respectively, found good 
general combiner for grain yield.

Table 2  Analysis of variance for line x tester for yield and yield component traits
Source MSS

Df Cob length (cm) Cob girth (cm) Kernel per row Kernel row number Grain yield (t/ha)
Replication 2 7.05 1.79 37.85 1.89 0.23
Genotypes 43 3.15* 0.78* 16.55* 2.60** 1.11**
Cross 38 3.26* 0.83* 17.48* 2.78** 0.99**
Line 12 1.90* 1.12* 12.47 3.77** 1.32**
Tester 2 11.49* 2.36* 4.88 6.37* 1.72**
LXT 24 3.24 0.56 21.04 1.99 0.76**
Error 86 3.10 0.76 12.76 1.54 0.26
CV (%) 10.19 5.95 11.20 9.06 16.70
CD at 5% 2.82 1.39 5.79 2.07 0.813
CD at 1% 3.75 1.85 7.69 2.75 1.08
Df: degrees of freedom, * & **: Significance at 5% and 1% probability, respectively

Table 3  The GCA effects of yield related traits and per se yield of parental lines
Parents Cob length (cm) Cob girth (cm) Kernel row number Kernel Per row Grain yield (t/ha) Grain Yield (kg/ha)
Lines
PML 45 -0.05 -0.36 -0.86 * -0.06 -0.38 * 2698.55
PML 44 0.07 -0.29 -0.68 -0.64 -0.48 ** 2207.00
PML 103 0.07 0.40 0.43 0.14 -0.49 ** 2715.00
PML 109 0.16 0.46* 0.85* 0.23 0.38* 2447.00
PML 110 0.32 0.59* 1.15** 0.85 0.46** 2741.35
PML 111 0.11 0.57* 1.01** 0.36 0.41 * 2730.10
PML 112 -0.21 0.21 0.28 -0.46 0.31 2604.50
PML 113 -0.22 -0.36 0.25 0.85 -0.03 2433.50
PML 114 0.18 0.53* 0.82* 0.17 0.36 ** 2178.93
PML 115 -0.03 -0.17 -0.68 0.41 0.26 1722.39
PML 116 0.42 0.61* 1.28** 0.59 0.56** 1713.86
DML-1336 0.25 -0.14 0.39 1.07 0.01 1087.99
DML-1913 -0.63 -0.30 -0.32 -3.28 ** -0.62 ** 1390.95
SE 0.59 0.29 0.43 1.17 0.18 -
Testers
PML 46 0.51 0.01 -0.33 -0.01 0.12 3113.20
PML 93 -0.57 * 0.25 -0.12 -0.35 0.12 3035.25
PML 102 0.07 -0.24 0.45 * 0.36 -0.24 ** 3026.25
SE 0.29 0.14 0.21 0.56 0.08 -
SE: Standard error, * and **: Significance at 5% and 1% probability, respectively
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Discussion

Breeding for hybrid in any crop is one of the finest interven-
tions of agriculture innovation which has directly impact on 
increasing in productivity. Understanding heterosis from the 
perspective of any single mechanisms alone may be elusive, 
because heterosis is likely an emergent property of popu-
lations [7]. Hybrid breeding technology mainly involves 
development of stable, trait specific inbred parental lines 
and identification of suitable parent for heterosis breeding 
[4]. Genetic variability is the pre-requisite for the selection 

Comparative evaluation of promising combinations 
having high SCA for grain yield was carried out. The five 
hybrid combinations viz., AH-4323 (PML 116 × PML 93), 
AH-4316 (PML 110 × PML 46), AH-4304 (PML 111 × 
PML 46), AH-4305 (PML 109 × PML 93) and AH-4334 
(PML 114 × PML 102) showed significantly superior grain 
yield over the medium maturing national check hybrid, Bio-
9544 (Supplementary Table 6).

Table 4  The SCA effects of hybrids for yield and yield component traits
S.No Hybrids Pedigree Cob length (cm) Cob girth (cm) Kernel row number Kernel Per row Grain yield (t/ha)
1 AH4300 PML 45XPML 46 -0.26 -0.34 -0.52 0.56 -0.06
2 AH4313 PML 44XPML 46 -1.27 -0.40 -0.19 -2.16 -0.07
3 AH4326 PML 103XPML 46 1.53 0.74 0.70 1.60 0.13
4 AH4301 PML 109XPML 46 0.62 0.10 0.64 1.27 -0.03
5 AH4314 PML 110XPML 46 -1.34 -0.42 -0.50 -2.98 -0.10
6 AH4327 PML 111XPML 46 0.72 0.32 -0.14 1.71 0.13
7 AH4302 PML 112XPML 46 -0.15 -0.06 -0.07 -0.37 -0.58
8 AH4315 PML 113XPML 46 -0.50 0.35 0.79 0.71 0.58
9 AH4328 PML 114XPML 46 0.65 -0.29 -0.72 -0.34 0.01
10 AH4303 PML 115XPML 46 -0.39 0.17 0.51 1.03 -0.18
11 AH4316 PML 116XPML 46 1.34 1.04 1.17* 2.17 0.68*
12 AH4329 DML-1336XPML 46 -0.95 -0.03 0.26 -3.20 -0.29
13 AH4304 DML-1913XPML 46 1.25 1.17 1.31* 2.85 0.85 **
14 AH4317 PML 45XPML 93 0.14 -0.21 -0.50 -2.27 -0.02
15 AH4330 PML 44XPML 93 -0.39 -0.56 -0.41 -0.58 -0.82 **
16 AH4305 PML 103XPML 93 1.24 1.12 1.28* 2.76 0.81**
17 AH4318 PML 109XPML 93 -0.39 -0.17 -0.32 0.82 -0.36
18 AH4331 PML 110XPML 93 0.73 0.37 0.44 -0.16 -0.02
19 AH4306 PML 111XPML 93 0.49 0.46 -0.12 -1.44 -0.18
20 AH4319 PML 112XPML 93 -0.43 -0.28 1.01 -0.29 0.04
21 AH4332 PML 113XPML 93 -0.07 -0.18 -0.90 1.73 0.14
22 AH4307 PML 114XPML 93 0.23 -0.04 0.11 0.38 0.16
23 AH4320 PML 115XPML 93 0.99 0.38 0.83 0.66 -0.51
24 AH4333 PML 116XPML 93 -1.22 -0.34 -0.94 -1.05 0.35
25 AH4308 DML-1336XPML 93 -0.89 -0.50 -0.83 -2.64 0.00
26 AH4321 DML-1913XPML 93 0.74 0.29 -0.23 3.97 -0.44
27 AH4334 PML 45XPML 102 1.15 1.00 1.06* 1.94 0.53*
28 AH4309 PML 44XPML 102 -0.75 -0.56 -0.03 -3.84 0.30
29 AH4322 PML 103XPML 102 0.66 0.20 -0.37 0.31 -0.34
30 AH4335 PML 109XPML 102 0.09 0.36 0.39 3.53 0.03
31 AH4310 PML 110XPML 102 -0.96 -0.24 -1.14 -0.90 -0.17
32 AH4323 PML 111XPML 102 1.29 1.24 1.48* 2.96 0.99 **
33 AH4336 PML 112XPML 102 1.25 -0.01 1.42 2.86 -0.81 **
34 AH4311 PML 113XPML 102 0.47 0.38 0.37 2.43 -0.01
35 AH4324 PML 114XPML 102 0.25 0.07 0.70 -2.23 -0.28
36 AH4337 PML 115XPML 102 -0.72 -0.45 -1.07 -0.20 0.29
37 AH4312 PML 116XPML 102 1.68 0.04 0.28 1.32 -0.47
38 AH4325 DML-1336XPML 102 0.09 0.09 -0.19 3.26 0.04
39 AH4338 DML-1913XPML 102 -1.78 -0.13 -0.10 -4.58 * 0.44
SE 1.03 0.50 0.75 2.03 0.30
SE: Standard error, * and **: Significance at 5% and 1% probability respectively
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The complete understanding of genetic basis of hetero-
sis and combining ability remains elusive, which, however, 
does not affect the vital role of heterosis and combining abil-
ity in general, and maize breeding, in particular. Although 
there are still some gaps to understand the mechanism of 
heterosis, but great progress has been made in predicting 
hybrid performance based on the combining ability studies 
[16]. In the present study, similar effort was made to under-
stand the lines performance through their combing ability 
studies, which may be helpful in future breeding program 
and/or selecting parental lines to exploit maximum heterosis 
[17].

Among the testers, PML 102 shows significant positive 
GCA effect for KRN (0.45) and negative GCA effect for 
yield (-0.24). Similarly, PML 93 and PML 46 showed non-
significant positive GCA effect for KRN and yield [18]. 
Therefore, above-mentioned testers can be used for the bet-
ter utilization of these yield components through the strat-
egy of heterosis breeding. Also, genotypes with high GCA 
effect with desirable traits can be used to constitute a good 
source population to derive better inbred lines and/or as a 
donor (KRN and CG) for further improvement of inbred 
lines [19]. As enunciated, GCA is an effective tool in the 
selection of parents based on the performance of their prog-
enies [20]. A low GCA value, positive or negative, implies 
that the mean of a parent in crossing with the other does 
not vary largely from the general mean of the crosses [21]. 
In contrast, a high GCA value implies that parental mean 
is either superior or inferior to the general mean in cross 
combinations. This is a potent evidence of desirable gene 
flow from parents to offspring at high intensity and repre-
sents information regarding the concentration of predomi-
nantly additive genes [22]. The combining ability analysis 
is one of the best methods for evaluating parental perfor-
mance and understanding the dynamics of genes involved 
in trait expression and has been successfully utilized in crop 
breeding [23]. Parental GCA estimates in desirable direction 
also indicative of their potentiality in generating promising 
breeding populations.

The usefulness of a particular cross involving diverse 
parental lines in exploiting heterosis phenomenon is judged 
by the SCA effect of the component lines. According to 
Sprague and Tatum [24], SCA is controlled by non-additive 
gene action and it can be utilized to determine specific het-
erotic crosses for the respective trait of interest [25]. Hence, 
the SCA effect is an important criterion for the evaluation 
of hybrids to select trait specific cross combinations [23]. In 
the present study, it was found that the hybrids, AH-4316, 
AH-4304, AH-4305, AH-4334 and AH-4323 were having 
significant SCA effects in positive direction for traits for 
KRN and grain yield in desirable direction. Further, it was 
observed that, female parents had positive and significant 

of inbred lines that leads to the directed maize improve-
ment [12]. In the present study, 16 promising inbred lines 
were selected among the 118-field corn inbred lines, evalu-
ated across two seasons. The analysis of variance indicated 
the presence of high genetic variability for CL, CG, KRN, 
KPR and grain yield. Grain yield being the function of yield 
component traits selected majorly for the enhancement of 
productivity. Hence, for the first instance, lines viz., PML 
46, PML 93 and PML 102 with their grain yield, 3113.20, 
3035.25, 3026.25 kg/ha respectively were selected as high 
yielding inbred lines, considering the population mean for 
the grain yield (2365.36 kg/ha) and its standard deviation 
(605.52 kg/ha) (Supplementary Table 3).

Heterosis is the function of allelic diversity and degree of 
dominance of a trait harbor in the parental lines, which are 
exploited during the development of hybrids [13]. Allelic 
diversity that explained by molecular diversity along with 
the morphological parameters gives better insights to under-
stand the genetic base of the inbred lines under selection. 
Molecular diversity analysis (50 SSR markers) showed PIC 
value > 0.5, which indicated that all sixteen inbred lines were 
highly diverse among each other [14]. Further, the cluster 
analysis was done using same markers (linked to yield and 
heterotic QTLs), it was showed three distinct clusters (I, II, 
& III), which showed the wider genetic divergence among 
the inbred lines under study.

The potentiality of inbred lines favoring heterosis can be 
identified by their combining ability studies. In the present 
investigation, a set of 13 female (lines) and 3 male (tester) 
parental lines were identified and crossed into line x tes-
ters fashion and generated 39 test cross hybrids. The analy-
sis of variance for combining ability suggested that there 
was significant variation due to cross or entries for all the 
traits studied, which in turn suggested the presence of wider 
genetic diversity among different traits. Furthermore, the 
partitioning of the mean sum of squares attribute to differ-
ent sources of variation revealed that mean sum of squares 
due to lines and its crosses were highly significant. Also, 
there was significant variation due to lines and testers for 
all the traits under studied except KPR; hence, there is a 
high genetic divergence between lines and testers [13]. This 
indicted that contribution of lines and testers for the final 
grain yield may be traits other than through number of KPR.

The interaction between line and tester was showed sig-
nificant differences for grain yield trait than the rest of traits. 
Therefore, testers used in the hybrid combinations were bet-
ter differentiated for productivity, the contribution towards 
variance due to hybrids could be better accounted for grain 
yield. Hence, as advocated, this design gives better insights 
to the performance of the lines and testers involved in the 
series of cross combinations [15].
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