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Chapter

Pseudophase Model in
Microemulsions
Antonio Cid, Aangel Acuña, Manuel Alonso-Ferrer,

Gonzalo Astray, Luis García-Río, Jesus Simal-Gándara and

Juan C. Mejuto

Abstract

The kinetic behaviours in microemulsions can be easily modelled using an
extension of the pseudophase model previously developed for micellar catalysis.
This model considers that the microheterogeneous media can be considered as the
sum of different conventional reaction media, where the reagents are distributed
and in which the reaction can occur simultaneously. The reaction rate observed in
the microheterogeneous system will be the sum of the velocities in each one of the
pseudophases. This use can be considered as an extension of the pseudophase
model, which has been developed for the quantitative analysis of nitrosation reac-
tions in AOT/isooctane/water microemulsions and has been applied successfully in
the literature in a large variety of chemical reactions.

Keywords: microemulsions, reverse micelles, kinetic model, pseudophase model

1. Introduction

The use of microemulsions, in particular, colloidal self-aggregates, and in gen-
eral, as reaction media [1] makes the application of kinetic models necessary for the
quantitative interpretation of the observed results. In this sense, a simple thermo-
dynamic model was developed for its application in micelles [2] and it was called
the pseudophase model [3]. This model was successfully applied through extensions
to different microheterogeneous systems over the last 50 years [4–10].

2. The pseudophase model

This model considers that the micellar system can be considered as the sum of
two conventional reaction media, the continuous pseudophase and the micellar
pseudophase, where the reagents are distributed and in which the reaction can
occur simultaneously (see Figure 1).

In this figure, A and B are the reagents, k is the kinetic constant and the
subscripts w and m denotes the reaction loci (w corresponds to the continuous
pseudophase and m is the micellar pseudophase). Finally, KA and KB are the
distribution coefficients of both reactants between different pseudophases.

1



The model considers that the reaction rate observed in the microheterogeneous
system will be the sum of the velocities in each one of the pseudophases, and it can
be expressed as shown in the following equations assuming a first-order reaction for
each reactant:

vT ¼ vw þ vm (1)

vT ¼ kobs AT½ � BT½ � (2)

vw ¼ kw Aw½ � Bw½ � (3)

vm ¼ km Am½ � Bm½ � (4)

k2 AT½ � BT½ � ¼ kw Aw½ � Bw½ � þ km Am½ � Bm½ � (5)

The mass balance on both pseudophases and the consideration of the distribu-
tion coefficients between them allow us to establish the existing relationship
between the total concentrations of the reactants and the concentrations in each of
the pseudophases considered.

A½ �T ¼ A½ �w þ A½ �m (6)

B½ �T ¼ B½ �w þ B½ �m (7)

KA ¼
A½ �m

A½ �w Dn½ �
(8)

KB ¼
B½ �m

B½ �w Dn½ �
(9)

In Eqs. (8) and (9), Dn denotes the concentration of surfactant micellized and
[Dn] = [D]-CMC (where D is the total surfactant concentration and CMC is the
critical micellar concentration). Using Eqs. (8) and (9), the following equations can
be written:

A½ �m ¼ KA A½ �w Dn½ � (10)

B½ �m ¼ KB B½ �w Dn½ � (11)

A½ �T ¼ A½ �w þ KA A½ �w Dn½ � (12)

B½ �T ¼ B½ �w þ KB B½ �w Dn½ � (13)

A½ �w ¼
A½ �T

1þ KA Dn½ �
(14)

Figure 1.
Pseudophase model applied to micellar aggregates as reaction media.
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B½ �w ¼
B½ �T

1þ KB Dn½ �
(15)

A½ �m ¼
A½ �TKA Dn½ �

1þ KA Dn½ �
(16)

B½ �m ¼
B½ �TKB Dn½ �

1þ KB Dn½ �
(17)

Using Eqs. (14)–(17) on Eq. (5), the following expressions can be deduced
(Eq. (18)–(21)):

k2 AT½ � BT½ � ¼ kw
A½ �T

1þ KA Dn½ �

B½ �T
1þ KB Dn½ �

þ km
A½ �TKA Dn½ �

1þ KA Dn½ �

B½ �TKB Dn½ �

1þ KB Dn½ �
(18)

k2 AT½ � BT½ � ¼ kw
1

1þ KA Dn½ �

1

1þ KB Dn½ �
AT½ � BT½ � þ km

KA Dn½ �

1þ KA Dn½ �

KB Dn½ �

1þ KB Dn½ �
AT½ � BT½ �

(19)

k2 ¼ kw
1

1þ KA Dn½ �

1

1þ KB Dn½ �
þ km

KA Dn½ �

1þ KA Dn½ �

KB Dn½ �

1þ KB Dn½ �
(20)

k2 ¼ kw
1

1þ KA Dn½ �ð Þ 1þ KB Dn½ �ð Þ
þ km

KAKB Dn½ �2

1þ KB Dn½ �1þ KA Dn½ �
(21)

According to the pseudophase model, each pseudophase is evenly distributed in
the total micellar dispersion volume. The value of rate constanst must be corrected
taking into account the molar volume of each pseudophase to compare de intrinsic
reactivity in the two different domains due to this reactants distribution between
both pseudophases [10].

Equation (21) can be simplified according to the distributions of A and B, and
the presence of chemical reaction in one or both pseudophases. This model predicts
the catalysis or inhibition processes with success due to the compartmentalising
effect of these colloidal aggregates [11–28]. However, this model must be expanded
to take into account possible ion exchange processes between the continuous
medium and the micelle, which give rise to more complicated expressions [29]. In
some cases, it is necessary to resort to Poisson-Boltzmann distribution to evaluate
the concentration of the different ions in the Stern and Gouy-Chapman layers to be
able to model the ion exchange process between the continuous medium and the
micellar electric double layer [30].

The pseudophase model applied to micelles has also been satisfactory for the
analysis of the kinetic results in more complex micellar systems such as mixed
micellar-cyclodextrin systems [31–37] or pseudo-micellar humic acids aggregates
[38–42].

3. The pseudophase model in microemulsions

The pseudophase model was first extended by our research group in order to
quantitatively analyse the kinetic behaviour of nitrosation reactions in
microemulsions based on AOT [43, 44]. Afterwards, this extended model, with
minor corrections, has been satisfactorily tested on microemulsions covering all
possible cases [45–55] such as: (i) different chemical reactions (ionic or non-ionic),
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(ii) reactants distributed throughout the different hydrophobic domains or
(iii) with different reaction loci.

Unlike in normal micelles, where we recognised two different domains (micelles
and bulk water), in a microemulsion system three domains can be found: (i) the
microdroplets of the dispersed phase, (ii) the continuous phase and (iii) the surfac-
tant film (or surfactant + cosurfactant) that stabilises the system. Due to this, in this
case, three pseudophases will be considered, taking into account the same proposed
considerations for the micellar model.

We will assume that the reactants can be located in each of these three
pseudophases, and their distribution will be governed by the distribution coeffi-
cients defined in an analogous way to that proposed in micelles. The chemical
reaction can take place in each of the three pseudophases. In this way, the model can
be explained according to Figure 2, where A and B are the reagents, k corresponds
to the kinetic constant and the subscripts d, i and c denotes the loci (c corresponds to
the continuous pseudophase, d with the dispersed pseudophase and i with the
surfactant film -or interphase-). KA,id and KB,id are the distribution coefficients of
both reactants between the interphase and the dispersed phase. KA,ic and KB,ic

correspond to distribution coefficients of both reactants between the interphase and
the continuous phase.

As in the case of micelles, the reaction rate observed in the microemulsions will
be the sum of the velocities in each one of the pseudophases as it shown in the
following equations (as in the case of micelles -vide supra-, assuming a first order
reaction for each reactant):

vT ¼ vc þ vi þ vd (22)

vT ¼ kobs AT½ � BT½ � (23)

vd ¼ kd Ad½ � Bd½ � (24)

vi ¼ ki Ai½ � Bi½ � (25)

vc ¼ kc Ac½ � Bc½ � (26)

k2 AT½ � BT½ � ¼ kd Ad½ � Bd½ � þ ki Ai½ � Bi½ � þ kc Ac½ � Bc½ � (27)

Figure 2.
Pseudophase model applied to microemulsions reaction media.
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As quoted above, the mass balance on the three pseudophases and the consider-
ation of the distribution coefficients between them allow us to establish the existing
relationship between the total concentrations of the reactants and the concentra-
tions in each of the pseudophases considered

A½ �T ¼ A½ �c þ A½ �i þ A½ �d (28)

B½ �T ¼ B½ �c þ B½ �i þ B½ �d (29)

KA, id ¼
A½ �i Dis½ �

A½ �d Dn½ �
(30)

KB, ic ¼
B½ �i C½ �

B½ �w Dn½ �
(31)

where [C] is the continuous phase concentration and [Dn] corresponds to the
concentration of surfactant in the microemulsion. In the case of micelles, [Dn] is
obtained as [Dn] = [D]-CMC; but in the case of microemulsions, CMC = 0. It means
that the surfactant concentration in the microemulsion is equal to the total surfac-
tant concentration. Similar expressions can be obtained for the partition coefficients
between the dispersed pseudophase and the interphase. In this case, [Dis] corre-
sponds to the dispersed phase concentration.

KA, id ¼
A½ �i Dis½ �

A½ �d Dn½ �
(32)

KB, id ¼
B½ �i Dis½ �

B½ �d Dn½ �
(33)

The previous equations (Eqs. (30)–(33)) can be rewritten using the characteris-
tic parameters of microemulsions: z and w. Both of them are mole ratios related with
the microemulsion geometry. The w ratio is the molar ratio between the disperse
phase concentration and the surfactant concentration, and z is the molar ratio
between continuous phase concentration and the surfactant concentration
(Eqs. (34) and (35)). The w ratio is directly proportional to the droplet radius and z
is inversely proportional to the number of microdroplets of the dispersed phase in
the microemulsion.

w ¼
Dis½ �

Dn½ �
(34)

z ¼
C½ �

Dn½ �
(35)

Hence,

KA, id ¼
A½ �i
A½ �d

w (36)

KB, id ¼
B½ �i
B½ �d

w (37)

KA, ic ¼
A½ �i
A½ �c

z (38)
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KB, ic ¼
B½ �i
B½ �c

z (39)

Using Eqs. (28), (29) and (36)–(39), the following equations can be written:

A½ �d ¼
A½ �iw

KA, id
(40)

B½ �d ¼
B½ �iw

KB, id
(41)

A½ �c ¼
A½ �iz

KA, ic
(42)

B½ �c ¼
B½ �iz

KB, ic
(43)

A½ �T ¼ A½ �i þ
A½ �iw

KA, id
þ

A½ �iz

KA, ic
(44)

B½ �T ¼ B½ �i þ
B½ �iw

KB, id
þ

B½ �iz

KB, ic
(45)

A½ �i ¼
A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� � (46)

B½ �i ¼
B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� � (47)

A½ �d ¼
w

KA, id

� �

A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� � (48)

B½ �d ¼
w

KB, id

� �

B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� � (49)

A½ �c ¼
z

KA, ic

� �

A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� � (50)

B½ �c ¼
z

KB, ic

� �

B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� � (51)

Then, using Eqs. (46)–(51), the following expressions are obtained:

k2 AT½ � BT½ � ¼ kd
w

KA, id

� �

A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� �

w

KB, id

� �

B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ ki
A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� �

B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ kc
z

KA, ic

� �

A½ �T

1þ w
KA, id

� �

þ z
KA, ic

� �

z

KB, ic

� �

B½ �T

1þ w
KB, id

� �

þ z
KB, ic

� � (52)

6

Microemulsion - A Chemical Nanoreactor



k2 ¼ kd
w

KA, id

� �

1

1þ w
KA, id

� �

þ z
KA, ic

� �

w

KB, id

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ ki
1

1þ w
KA, id

� �

þ z
KA, ic

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ kc
z

KA, ic

� �

1

1þ w
KA, id

� �

þ z
KA, ic

� �

z

KB, ic

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� � (53)

k2 ¼ kd
w2

KA, idKB, id

� �

1

1þ w
KA, id

� �

þ z
KA, ic

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ ki
1

1þ w
KA, id

� �

þ z
KA, ic

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� �þ

þ kc
z2

KA, icKB, ic

� �

1

1þ w
KA, id

� �

þ z
KA, ic

� �

1

1þ w
KB, id

� �

þ z
KB, ic

� � (54)

k2 ¼
KA, icKB, icw

2kd
KA, idKA, ic þ KA, icwþ KA, idzð Þ KB, idKB, ic þ KB, icwþ KB, idzð Þ

þ

þ
KA, idKA, icKB, idKB, icki

KA, idKA, ic þ KA, icwþ KA, idzð Þ KB, idKB, ic þ KB, icwþ KB, idzð Þ
þ

þ
KA, idKB, idz

2kc
KA, idKA, ic þ KA, icwþ KA, idzð Þ KB, idKB, ic þ KB, icwþ KB, idzð Þ

(55)

k2 ¼
KA, icKB, icw

2kd þ KA, idKA, icKB, idKB, icki þ KA, idKB, idz
2kc

KA, idKA, ic þ KA, icwþ KA, idzð Þ KB, idKB, ic þ KB, icwþ KB, idzð Þ
(56)

This expression (Eq. (56)) can be simplified considering pseudo-first order
conditions, and, of course, taking into account the reagents partitions and the loci of
reaction (see Table 1).

Finally, to compare the obtained results, as quoted above for micelles model -
vide supra-, the rate constant values must be corrected taking into account each
pseudophase molar volume because the pseudophase model considers that each
pseudophase is evenly distributed in the total microemulsion volume [47].

4. Conclusions

The presented model is capable of modelling, as shown in Table 1, all the
possible circumstances that can occur when the microemulsion is used as a chemical
nanoreactor. In all the cases, the adjustment of the experimental data to the model is
satisfactory, which shows us that despite its simplicity it presents a great versatility.

We must also indicate that it has not only been applied to micellar systems and
microemulsions but also, with satisfactory results, to kinetic processes in other
colloidal aggregates such as vesicles [61, 62].
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Reaction A

Partition

B

Partition

Reaction

Loci

Ref.

D I C D I C D I C

Hydrolysis Nitrophenyl Acetate (A) + OH� (B) [56]

Cristal Violet (A) + OH� (B) [57]

Malachite Green (A) + OH� (B) [57]

Sodium nitroprusside (A) + OH� (B) [58]

Carbofuran (A) + OH� (B) [46]

3-hydroxy-carbofuran (A) + OH� (B) [46]

3-keto-carbofuran (A) + OH� (B) [46]

Nitrosation Piperazine (A) + N-Methyl-N-nitroso-p-

toluene sulfonamide (B)

[43]

N-Methyl-benzyl amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[43]

Methyl-ethyl amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[48]

Methly-butyl amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[48]

Methyl-hexyl amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[48]

Methyl-octyl amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[48]

Methyl-dodecil amine (A) + N-Methyl-N-

nitroso-p-toluene sulfonamide (B)

[48]

N-Methyl-benzyl amine (A) + Ethoxy-ethyl

nitrite (B)

[44]

N-Methyl-benzyl amine (A) + Bromo-ethyl

nitrite (B)

[44]

Piperidine (A) + N-Methyl-N-nitroso-p-

toluene sulfonamide (B)

[43]

Nitrosation Dimiethylamine (A) + N-Methyl-N-nitroso-p-

toluene sulfonamide (B)

[43]

Morphonile (A) + N-Methyl-N-nitroso-p-

toluene sulfonamide (B)

[43]

Pyrrolidine (A) + N-Methyl-N-nitroso-p-

toluene sulfonamide (B)

[43]

Piperazine (A) + Ethoxy-ethyl nitrite (B) [44]

Piperazine (A) + Bromo-ethyl nitrite (B) [44]

Morpholine (A) + Ethoxy-ethyl nitrite (B) [44]

Morpholine (A) + Bromo-ethyl nitrite (B) [44]

Aminolysis Sarcosine (A) + Nitrophenyl Acetate (B) [49]

Piperazine (A) + Nitrophenyl Acetate (B) [49]

Glycine (A) + Nitrophenyl Acetate (B) [50]

N-decyl amine (A) + + Nitrophenyl Acetate

(B)

[49]

N-methyl-benzyl amine (A) + Nitrophenyl

Acetate (B)

[51]
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Reaction A

Partition

B

Partition

Reaction

Loci

Ref.

D I C D I C D I C

Morpholine (A) + Nitrophenyl Acetate (B) [59]

N-butylamine (A) + Nitrophenyl caprate (B) [60]

Michael

addition

Piperazine (A) + N-ethylmaleimide (B) [51]

Solvólisis Benzoyl chloride (A) + H2O (B) [53]

4-Methoxy-benzoyl chloride (A) + H2O (B) [53]

Diphenylmethyl chloride (A) + H2O (B) [53]

D and C correspond to the dispersed or the continuous phase, respectively, I denotes the surfactant film. Reactions in
w/o microemulsions of AOT/isooctane/water.

Table 1.
Examples of reactions in microemulsions satisfactorily modelled with the pseudophase model.
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