97 research outputs found

    Assembly planning in cluttered environments through heterogeneous reasoning

    Get PDF
    Assembly recipes can elegantly be represented in description logic theories. With such a recipe, the robot can figure out the next assembly step through logical inference. However, before performing an action, the robot needs to ensure various spatial constraints are met, such as that the parts to be put together are reachable, non occluded, etc. Such inferences are very complicated to support in logic theories, but specialized algorithms exist that efficiently compute qualitative spatial relations such as whether an object is reachable. In this work, we combine a logic-based planner for assembly tasks with geometric reasoning capabilities to enable robots to perform their tasks under spatial constraints. The geometric reasoner is integrated into the logic-based reasoning through decision procedures attached to symbols in the ontology.Peer ReviewedPostprint (author's final draft

    Multi-robot grasp planning for sequential assembly operations

    Get PDF
    This paper addresses the problem of finding robot configurations to grasp assembly parts during a sequence of collaborative assembly operations. We formulate the search for such configurations as a constraint satisfaction problem (CSP).Collision constraints in an operation and transfer constraints between operations determine the sets of feasible robot configurations. We show that solving the connected constraint graph with off-the-shelf CSP algorithms can quickly become infeasible even fora few sequential assembly operations. We present an algorithm which, through the assumption of feasible regrasps, divides the CSP into independent smaller problems that can be solved exponentially faster. The algorithm then uses local search techniques to improve this solution by removing a gradually increasing number of regrasps from the plan. The algorithm enables the user to stop the planner anytime and use the current best plan if the cost of removing regrasps from the plan exceeds the cost of executing those regrasps. We present simulation experiments to compare our algorithm’s performance toa naive algorithm which directly solves the connected constraint graph. We also present a physical robot system which uses the output of our planner to grasp and bring parts together in assembly configurations

    Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p

    Human Herpesvirus 8 (HHV8) Sequentially Shapes the NK Cell Repertoire during the Course of Asymptomatic Infection and Kaposi Sarcoma

    Get PDF
    The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8) has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi's sarcoma (KS). Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2) as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells

    Manipulation planning under changing external forces

    Get PDF
    This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by a robot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps. We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show the performance of our planner

    A Collision Checker for Car-Like Robots Coordination

    No full text
    : This paper presents a geometric algorithm dealing with collision checking in the framework of multiple mobile robot coordination. We consider that several mobile robots have planned their own collision-free path by taking into account the obstacles, but ignoring the presence of other robots. We first compute the domain swept by each robot when moving along its path; such a domain is called a trace. Then the algorithm computes the coordination configurations for one robot with respect to the others, i.e. the configurations along the path where the robot enters the traces of the other robots or exits from them. This information may be exploited to coordinate the motions of all the robots. 1 Introduction This paper presents a geometric algorithm dealing with collision checking in the framework of multiple mobile robot coordination. Path planning for multiple robots has been addressed along two main axis: centralized and decentralized approaches. In the centralized approaches the sear..

    Computing Good Holonomic Collision-Free Paths to Steer Nonholonomic Mobile Robots

    No full text
    : Several schemes have been proposed in the path planning-literature to plan collision-free and feasible trajectories for non-holonomic mobile robots. A classical scheme is the two-step approach proposed in [4, 8, 5] which consists in first computing a collision-free holonomic path, and then in transforming this path by a sequence of feasible ones. The quality of the solution and the computational cost of the second step depend on the shape of the holonomic path. In this paper, we introduce a nonholonomic cost of the geometric path to be approximated and we propose a configuration space structuring that allows us to compute an holonomic path minimizing at best the nonholonomic cost. The algorithms have been implemented and we present simulation results which illustrate the efficacy of the planner to produce good solutions with respect to the nonholonomic constraints of a mobile robot. 1 Introduction This paper deals with a two-step approach of motion planning for nonholonomic mobile ..
    corecore