
Assembly Planning in Cluttered Environments
through Heterogeneous Reasoning

Daniel Beßler1, Mihai Pomarlan1, Aliakbar Akbari2, Muhayyuddin2,
Mohammed Diab2, Jan Rosell2, John Bateman1, Michael Beetz1 ?

1Universität Bremen, Bremen, Germany
2Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Assembly recipes can elegantly be represented in description
logic theories. With such a recipe, the robot can figure out the next
assembly step through logical inference. However, before performing an
action, the robot needs to ensure various spatial constraints are met, such
as that the parts to be put together are reachable, non occluded, etc. Such
inferences are very complicated to support in logic theories, but special-
ized algorithms exist that efficiently compute qualitative spatial relations
such as whether an object is reachable. In this work, we combine a logic-
based planner for assembly tasks with geometric reasoning capabilities
to enable robots to perform their tasks under spatial constraints. The
geometric reasoner is integrated into the logic-based reasoning through
decision procedures attached to symbols in the ontology.

1 Introduction

Robotic tasks are usually described at a high level of abstraction. Such represen-
tations are compact, natural for humans for describing the goals of a task, and
at least in principle applicable to variations of the task. An abstract “pick part”
action is more generally useful than a more concrete “pick part from position
x”, as long as the robot can locate the target part and reach it.

Robotics manipulation problems, however, may involve many task constraints
related to the geometry of the environment and the robot, constraints which are
difficult to represent at a higher level of abstraction. Such constraints are, for
example, that there is either no direct collision-free motion path or feasible con-
figuration to grasp an object because of the placement of some other, occluding
object. Recently, much research has been centred on solving manipulation prob-
lems using geometric reasoning, but there is still a lack of incorporating the
geometric information inside higher abstraction levels.

In this paper, we look at the task of robotic assembly planning, which we
approach, at the higher abstract level, in a knowledge-enabled way. We use an

? This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) through
the Collaborative Research Center 1320, EASE, and by the Spanish Government
through the project DPI2016-80077-R. Aliakbar Akbari is supported by the Spanish
Government through the grant FPI 2015.

(1) (2)

(3) (4)

Fig. 1: Different initial workspace configurations of a toy plane assembly (1-3), and
the completed plane assembly (4).

assembly planner based on formal specifications of products to be created, parts
they are to be created from, and mechanical connections to be formed between
them. At this level we represent what affordances a part must provide, in order
for it to be able to enter a particular connection or be grasped in a certain way,
as well as model that certain grasps and connections block certain affordances.
The planning itself proceeds by comparing individuals in the knowledge base
with their terminological model, finding inconsistencies, and producing action
items to resolve these. For example, if the asserted type of an entity is “Car”,
the robot can infer that, to be a car, this entity must have some wheels attached,
and if this is not the case, the planner will create action items to add them.

In our previous work, the various geometrically motivated constraints per-
taining, for example, what grasps are available on a part depending on what me-
chanical connections it has to other parts, were modelled symbolically. We added
axioms to the knowledge base that assert that a connection of a given type will
block certain affordances, thus preventing the part to enter certain other con-
nections and grasps. We also assumed that the workspace of the robot would be
sufficiently uncluttered so that abstract actions like “pick part” will succeed. In
this paper, we go beyond these limitations and ground geometrically-meaningful
symbolic relations through geometric reasoning that can perform collision and
reachability checking, and sampling of good placements.

The contributions of this paper are the following ones:

– a framework for assembly planning that allows reasoning about relations that
are grounded on demand in results of geometric reasoning procedures, and
the definition of procedures that abstract results of the geometric reasoner
into symbols of the knowledge base; and

– extensions of the planner that allow switching between different planning
strategies with different goal configurations, and the declaration of action
pre-conditions and planning strategies for assembly tasks in cluttered scenes.

2 Related Work

Several projects have pursued ontological modelling in robotics. The IEEE-RAS
work group ORA [16] aims to create a standard for knowledge representation in
robotics. The ORA core ontology has been extended with ontologies for specific
industrial tasks [7], such as kitting: the robot places a set of parts on a tray so
these may be carried elsewhere. To the best of our knowledge, assembly tasks
have not yet been represented in ORA ontologies. Other robotic ontologies are
the Affordance Ontology [23] and the open-source KnowRob ontology [22], the
latter of which we use.

Knowledge-enabled approaches have been used for some industrial processes:
kitting [3, 4, 14] and assembly (the EU ROSETTA project [8, 12, 18]). Logic de-
scriptions have also been used to define a problem for general purpose plan-
ners [4, 9]. In previously cited papers, knowledge modelling for assembly is ei-
ther in the form of abstract concepts about sequences of tasks (as in [8]), or
about geometric features of atomic parts (as in [13]). The approach we use in
this paper builds on our previous work [5], where we generate assembly opera-
tions from OWL specifications directly (without using PDDL solvers), and the
knowledge modelling includes concepts such as affordances, grasps, mechanical
connections, and how grasps and mechanical connections influence which affor-
dances are available. Generating assembly operations from OWL specifications
is faster than planning approaches and amenable to frequent customization of
assembled products. We improve on our previous work by integrating geometric
reasoning about the action execution into the knowledge-based planner.

Different types of geometric reasoning have been considered in manipulation
planning. [11] has investigated dynamic interactions between rigid bodies. A
general manipulation planning approach using several Probabilistic Roadmaps
(PRM) has been developed by [17] that considers multiple possible grasps (usable
for re-grasping objects) and stable placements of movable objects. The manip-
ulation problem of Navigation Among Movable Obstacles (NAMO) has been
addressed by the work in [20] and [19] using a backward search from the goal
in order to move objects out of the way between two robot configurations. The
work in [1,2] have extended this work with ontological knowledge by integrating
task and motion planning.

3 Assembly Activities in Cluttered Workspaces

Assembly tasks often have a fixed recipe that, if followed correctly, would control
an agent such that available parts are transformed into an assembled product.
These recipes can elegantly be represented using description logics [5]. But infer-
ring the sequence of assembly actions is not sufficient for robots because actions
may not be performable in the current situation. This is, for example, the case
when the robot cannot reach an object because it is occluded. A notion of space,
on the other hand, is very complicated in a logic formalism, but specialized meth-
ods exist that efficiently compute qualitative spatial relations such as whether
objects are occluding each other.

Entity
Planning

Logic
Reasoning

Action
Integration

Geometric
Reasoning

Executive
Module

Planning
Ontology

Assembly
Ontology

Concepts

Action
Ontology

Geometric
Relations

initial goal

strategy

planning
decisions

goals

inference

command

axioms

action model

Fig. 2: The architecture of our heterogeneous reasoning system.

Our solution is depicted in Figure 2. We build upon an existing planner and
extend it with a notion of action, and geometric reasoning capabilities. Actions
are represented in terms of the action ontology which also defines action pre-
conditions. Pre-conditions are ensured by running the planner for the action
entity. This is used to ensure that the robot can reach an object, or else tries to
put away occluding objects. To this end we integrate a geometric reasoner with
the knowledge base. The interfaces of the geometric reasoner are hooked into the
logic-based reasoning through procedural attachments in the knowledge base.

The planner [5] is an extension of the KnowRob knowledge base 1 [22].
KnowRob is a Prolog-based system with Web Ontology Language (OWL) sup-
port. OWL semantics is implemented with the closed world assumption through
the use of negation as failure in Prolog rules. We use this to identify what in-
formation is missing or false about an individual according to OWL entailment
rules. Another useful aspect of KnowRob is that symbols can be grounded
through invoking computational procedures such as geometric reasoner.

The geometric reasoner is a module of the Kautham Project 2 [15]. It is
a C++ based tool for motion planning that enables to plan under geome-
tric and kinodynamic constraints. It uses the Open Motion Planning Library
(OMPL) [21] as a core set of sampling-based planning algorithms. In this work,
the RRT-Connect motion planner [10] is used. For the computation of inverse
kinematics, the approach developed by [24] is used.

4 Knowledge Representation for Assembly Activities

In our approach, the planner runs within the perception-action loop of a robot.
The knowledge base maintains a belief state, and entities in it may be referred
to in planning tasks. In previous work, we have defined an ontology to describe
assemblages, and meta knowledge to control the planner [5]. In the following
sections, we will briefly review our previous work in assembly modelling and
present further additions to it that we implemented for this paper. The interplay
between the different ontologies used in our system is depicted in Figure 3.

1 http://knowrob.org
2 https://sir.upc.edu/projects/kautham/

Assemblage

Connection

Affordance

MechanicalPart

Assembly Ontology

uses

needs

has occludes

ConnectingParts

PutAwayPart

MovingPart

Action Ontology

ActionMapper

Strategy

Agenda

AgendaItem

Planning Ontology

uses

has

needs

moves

mapsassembles

avoids, moves

has

Fig. 3: The interplay of ontologies in our system.

4.1 Assembly Ontology

The upper level of the assembly ontology defines general concepts such as Me-
chanicalPart and AssemblyConnection. Underneath this level there are part on-
tologies that describe properties of parts such as what connections they may
have, and what ways they can be grasped. Finally, assemblage ontologies describe
what parts and connections may form an assemblage. This layered organization
allows part ontologies to be reused for different assemblies. Also important is
the Affordance concept. Mechanical parts provide affordances, which are re-
quired (and possibly blocked) by grasps and connections. Apart from these very
abstract concepts, some common types of affordances and connections are also
defined (e.g. screwing, sliding, and snapping connections).

To these, we have added a new relation occludesAffordance with domain
AtomicPart and range Affordance. A triple “P occludesAffordance A” means the
atomic part P is placed in such a way that it prevents the robot from moving one
of its end effectors to the affordance A (belonging to some other part P’). Parts
can be said to be graspable if they have at least one non-occluded grasping
affordance. The motivation for the addition of this property is that it helps
representing spatial constraints in the workspace, a consideration we did not
address in our previous work.

Also, in our previous work, the belief state of the robot was stored entirely
in the knowledge base. It includes object poses, if and how an object is grasped,
mechanical connections between objects, etc. Consistency is easier to maintain
for a centralized belief state, but components of the robot control system need to
be tightly integrated with the knowledge base for this to work. In our previous
work, we could enforce this as both perception and executive components of
our system were developed in our research group. For our work here, however,
we need to integrate KnowRob with a motion planner that stores its own
representation of the robot workspace, and uses its own naming convention for
the objects. We therefore add a data property planningSceneIndex to help relate
KnowRob object identifiers with Kautham planning scene objects.

4.2 Action Ontology

At some point during the planning process, the robot has to move its body to
perform an action. In previous work, we used action data structures which were
passed to the plan executive. The plan executive had to take care that pre-
conditions were met, which sub-actions to perform, etc. In this work, explicit
action representations are used to ensure that pre-conditions are met before
performing an action. The action ontology includes relations to describe objects
involved, sub-actions, etc. Here, we focus on the representation of pre-conditions.

Our modelling of action pre-conditions is based on the preActors relation
which is used to assert axioms about entities involved in the action that must
hold before performing it. The upper ontology also defines more specific cases of
this relation such as objectActedOn that denotes objects that are manipulated,
or toolUsed that denotes tools which are operated by the robot.

ConnectingParts The most essential action the robot has to perform during an
assembly task is to connect parts with each other. At least one of the parts must
be held by the robot and moved in a way that establishes the connection. Per-
forming the action is not directly possible when the part to be moved cannot be
grasped. This is the case when a part blocks a required affordance, for example,
due to being in the wrong holder, blocked by another part, etc.

First, we define the relations assemblesPart v objectActedOn, and fixed-
Part and mobilePart v assemblesPart. These denote MechanicalPart ’s involved
in ConnectingParts actions, and distinguish between mobile and static parts.
We further define the relation assemblesConnection that denotes the Assembly-
Connection the action tries to establish. The assemblesPart relation is defined
as property chain assemblesConnection ◦ hasAtomicPart, where hasAtomicPart
denotes the parts linked in an AssemblyConnection. This ensures that assem-
blesPart only denotes parts that are required by the connection. Using these
relations we assert following axioms for the ConnectingParts action:

≤ 1assemblesConnection.Thing ∧ ≥ 1assemblesConnection.Thing (1)

≥ 2assemblesPart.Thing (2)

≤ 2mobilePart.Thing ∧ ≥ 1mobilePart.Thing (3)

These axioms define that (1) an action is performed for exactly one assembly
connection; (2) at least two parts are involved; and (3) at max two parts are
mobile, and at least one mobile part is involved.

Another pre-condition is the graspability of mobile parts. Parts may relate
to GraspingAffordance’s that describe how the robot should position its gripper,
how much force to apply, etc. to grasp the part. We assert the following axioms
that ensure each mobile part offers at least one unblocked GraspingAffordance:

FreeAffordance ≡ (≤ 0blocksAffordance−.AssemblyConnection) (4)

∀mobilePart.(∃hasAffordance.(GraspingAffordance ∧ FreeAffordance) (5)

Next, we define a property partConnectedTo that relates a part to parts
it is connected to. It is sub-property of the property chain hasAtomicPart− ◦
hasAtomicPart. Also, we assert that this relation is transitive such that it holds
for parts which are indirectly linked with each other. This is used to assert that
fixed parts must be attached to some fixture:

∀fixedPart.(∃partConnectedTo.Fixture) (6)

Also, parts must be in the correct fixture for the intended connection. To
ensure this, we assert that required affordances must be unblocked:

∀assemblesConnection.(∀usesAffordance.FreeAffordance) (7)

Finally, we define partOccludedBy ≡ hasAffordance ◦ occludesAffordance−

which relates parts to parts occluding them, and assert that parts cannot be
occluded by other parts when the robot intends to put them together:

∀assemblesPart.(≤ 0partOccludedBy.MechanicalPart) (8)

MovingPart and PutAwayPart The above statements assert axioms that must
be ensured by the planner. These refer to entities in the world and may require
certain actions to be performed to destroy or create relations between them. In
this work, we focus on ensuring valid spatial arrangement in the scene.

First, the robot should break non permanent connections in case one of
the required affordances is blocked. We define this action as MovingPart v
PuttingSomethingSomewhere. The only pre-actor is the part itself. It is linked to
the action via the relation movesPart v objectActedOn. We assert that the part
must have an unblocked grasping affordance (analogues to axiom (5)).

Further, parts that occlude required parts for an assembly step must be put
away. We define this action as PutAwayPart v PuttingSomethingSomewhere.
This action needs exactly one movesPart, and additionally refers to the parts that
should be “avoided”, which means that the target position should not lie between
the robot and avoided parts: ∃avoidsPart.MechanicalPart, where avoidsPart is
another sub-property of preActors. Describing possible target positions in detail
would be extremely difficult in a logical formalism, and is not considered in the
scope of this work.

4.3 Planning Ontology

Our planner is driven by comparing goals, represented in the TBox, with be-
lieves, represented in the ABox, and controlled by meta knowledge that we call
planning strategy. The planning strategy determines which parts of the ontol-
ogy are of interest in the current phase, how steps are ordered, and how they
are performed in terms of how the knowledge base is to be manipulated. Possi-
ble planning decisions are represented in a data structure that we call planning
agenda. Planning agendas are ordered sequences of steps that each, when per-
formed, modify the belief state of the robot in some way. The planner succeeds
if the belief state is a proper instantiation of the goal description.

Different tasks require different strategies that focus on different parts of
the ontology, and that have specialized rules for processing the agenda. The
strategy for planning an assemblage, for example, focuses on relations defined in
the assembly ontology. Planning to put away parts, on the other hand, is mainly
concerned with spatial relations. In previous work, the strategy selection was
done externally. Here, we associate strategies to entities that should be planned
with them. To this end, we define the relation needsEntity that denotes entities
that are planned by some strategy. Strategies assert a universal restriction on
this relation in order to define what type of entities can be planned with them.
For the assemblage planning strategy, for example, we assert the axiom:

∀needsEntity.(Assemblage ∨AssemblyConnection) (9)

Planning decisions may not correspond to actions that the robot needs to
perform to establish the decisions in its world. Some decisions are purely vir-
tual, or only one missing piece in a set of missing information required to perform
an action. The mapping of planning decisions to action entities is performed in a
rule-base fashion in our approach. These rules are described using the AgendaAc-
tionMapper concept, and are linked to the strategy via the relation usesAction-
Mapper. Each AgendaActionMapper further describes what types of planning
decisions should activate it. This is done with agenda item patterns that acti-
vate a mapper in case a pattern matches the selected agenda item. These are
linked to the AgendaActionMapper via the relation mapsItem.

Finally, we define the AgendaActionPerformer concept which is linked to the
strategy via the relation usesActionPerformer. AgendaActionPerformer provide
facilities to perform actions by mapping them to data structures of the plan
executive, and invoking an interface for action execution. They are activated
based on whether they match a pattern provided for the last agenda item.

5 Reasoning Process using Knowledge and Geometric
Information

Our reasoning system is heterogeneous, which means that different reasoning re-
sources and representations are fused into a coherent picture that covers different
aspects. In this section, we will describe the two different reasoning methods used
by our system: knowledge-based reasoning and geometric reasoning.

5.1 Knowledge-based Reasoning

In this project, knowledge-based reasoning refers primarily to checking whether
an individual obeys the restrictions imposed on the classes to which it is claimed
to belong, identifying an individual based on its relations to others, and identi-
fying a set of individuals linked by certain properties (as done when identifying
which parts have been linked, directly or indirectly, via connections). This is
done by querying an RDF triple store to check whether appropriate triples have
been asserted to it or can be inferred.

KnowRob, however, allows more underlying mechanisms for its reasoning. In
particular, decision procedures, which can be arbitrary programs, can be linked
to properties. In that case, querying whether an object property holds between
individuals is not a matter of testing whether triples have been asserted. Rather,
the decision procedure is called, and its result indicates whether the property
holds or not. Such properties are referred to as computables, and they offer a
way to bring together different reasoning mechanisms into a unified framework
of knowledge representation and reasoning.

For this work, we use computables to interface to the geometric reasoner
provided by the Kautham Project. The reasoner is called to infer whether the
relation occludesAffordance holds between some part and an affordance.

5.2 Geometric Reasoning

The main role of geometric reasoning is to evaluate geometric conditions of
symbolic actions. Two main geometric reasoning processes are provided:

Reachability Reasoning A robot can transit to a pose if it has a valid goal
configuration. This is inferred by calling an Inverse Kinematic (IK) module and
evaluating whether the IK solution is collision-free. The first found collision-free
IK solution is returned, and, if any, the associated pose. Failure may occur if
either no IK solution exists or if no collision-free IK solution exists.

Spatial Reasoning We use this module to find a placement for an object within
a given region. For the desired object, a pose is sampled that lies in the surface
region, and is checked for collisions with other objects, and whether there is
enough space to place the object. If the sampled pose is feasible, it is returned.
Otherwise, another sample will be tried. If all attempted samples are infeasible,
the reasoner reports failure, which can be due to a collision with the objects, or
because there is not enough space for the object.

6 OWL Assembly Planning using the Reasoning Process

We extend the planner for computable relations, and also for being able to
generate sub-plans in case some pre-conditions of actions the robot needs to
perform are not met. We will explain the changes we made for this paper below.

6.1 Selection of Planning Strategies

The planner is driven by finding differences between a designated goal state and
the belief state of a robotic agent. The goal is the classification of an entity as a
particular assemblage concept. The initial goal state is part of the meta know-
ledge supplied to the planner (i.e., knowledge that controls the planning process).
Strategies further declare meta knowledge about prioritization of actions, and
also allow ignoring certain relations entirely during a particular planning phase.

Strategies are useful because it is often hard to formalize a complete planning
domain in a coherent way. One way to approach such problems is decomposition:
Planning problems may be separated into different phases that have different
planning goals, and that have a low degree of interrelations.

Planning in our approach means to transform an entity in the belief state
of the robot with local model violations into one that is in accordance with its
model. In our approach, each of the planned entities may use its own planning
strategy. The strategy for a planning task is selected based on universal restric-
tions of the needsEntity relation. The selection procedure iterates over all known
strategies and checks for each whether the planned entity is a consistent value
for the needsEntity relation. Only the first matching strategy is selected.

Activating a strategy while another is active pauses the former until the sub-
plan finished. In case the sub-plan fails, the parent plan also fails if no other
way to achieve the sub-plan goal is known. The meta-knowledge controlling the
planner ensures to some extent that the planner does not end up in a bad state
where it loops between sequences of decisions that revert each other. In case this
happens, the planner will detect the loop and fail.

6.2 Integration with Task Executive

Assembly action commands can be generated whenever an assemblage is en-
tirely specified. This is the case if the assemblage is a proper instance of all its
asserted types according to OWL entailment rules including the connection it
must establish and the sub-assemblies it must link. Further action commands
are generated if a part of interest cannot be grasped because another part is
occluding it. To this end, we have extended the planning loop such that it uses a
notion of actions, and can reason about which action the robot should perform
to establish planning decisions in the belief state.

In each step of the planning loop, the agenda item with top priority is selected
for processing. Each item has an associated axiom in the knowledge base that
is unsatisfied according to what the robot believes. First, the planner infers a
possible domain for the decision. That is, for example, which part it should use
to specify a connection. This step is followed by the projection step in which the
planner manipulates the knowledge base by asserting or retracting facts about
entities. Finally, the item is either deleted if completed, or re-added in case the
axiom remains unsatisfied. Also, new items are added to the agenda for all the
entities that were linked to the planned entity during the projection step.

We extend this process by the notion of AgendaActionMapper and AgendaAc-
tionPerformer which are used for generating action entities and passing them
to an action executive respectively. Their implementation in the knowledge base
is very similar. They both restrict relations to describe for which entities they
should be activated, and may specify agenda item patterns used for their acti-
vation. Matching a pattern means in our framework that the processed agenda
item is an instance of the pattern according to OWL entailment rules. Finally,
both define hooks to procedures that should be invoked to either generate an
action description, or to perform it.

The mapping procedure is invoked after the planner inferred the domain for
the currently processed agenda item. The generated action entities must not
necessarily satisfy all their pre-conditions. Instead, the planner is called recur-
sively while restricting the planning context to preActor axioms. This creates a
specific preActor -agenda that contains only items corresponding to unsatisfied
pre-conditions of the action. The items in the preActor -agenda may again be
associated to actions that need to be performed to establish the pre-conditions
in the belief state, and for which individual planning strategies and agendas are
used. Finally, the action entity is passed to the selected action performer. In case
the action failed, the agenda item is added to the end of the agenda such that
the robot tries again later on, and the planner fails in case it detected a loop.

6.3 Planning with Computable Relations

Computable relations are inferred on demand using decision procedures, and as
such are not asserted to the triple store. They often depend on other properties,
such as the object locations, and require that the robot performs some action
that will change its believes, such as putting the object to some other location.

The planner needs to project its decisions into the belief state for non-
computable relations. This step is skipped entirely for computable relations:
Only the action handler is called to generate actions that influence the compu-
tation. In case the robot was not able to change its believes such that the action
pre-conditions are fulfilled, the agenda item is put back at the end of agenda.

In addition, we switched to the computable based reasoning interface offered
by KnowRobṪhe difference is that it considers computed and asserted triples.

7 Evaluation

We characterize the performance of our work along following dimensions: Vari-
ances of spatial configurations our system can handle, and what types of queries
can be answered. The planning domain for evaluation is a toy plane assembly
targeted at 4 year old children with 21 parts. The plane is part of the YCB
Object and Model Set [6]. It uses slide in connections for the parts, and bolts
for fixing the parts afterwards. The robot we use is a YuMi. It is simulated in a
kinematics simulator and visualized in RViz.

7.1 Simulation

We test our system with different initial spatial configurations, depicted in Fig-
ure 1. The first scene has no occlusions. In the second, the upper part of the plane
body is occluding the lower part, and the propeller is occluding the motor grill.
Finally, in the third, the chassis is not connected to the holder, and occluded
by the upper part of the plane body. We disabled collision checking between the
airplane parts to avoid spurious collisions being found at the goal configurations
(the connections fit snugly). Geometric reasoning about occlusions allows the

robot knowing when it needs to move parts out of the way and change the initial
action sequence provided by the OWL planner.

7.2 Querying

In this work, we have extended the robot’s reasoning capabilities regarding to
geometric relations it can infer, what pre-conditions an action has, and which
actions it has to perform to establish planning decisions in its belief state.

The geometric reasoner is integrated through computable geometric relations.
The robot can reason about them by asking questions such as “what are the
occluded parts required in a connection?”:

?− holds (needsAf fordance (Connection , Af fordance)) ,
holds (hasAffordance (Occluded , Af fordance)) ,
holds (partOccludedBy (Occluded , OccludingPart)) .

Occluded=’PlaneBottomWing1 ’ , OccludingPart=’ PlaneUpperBody1 ’ .

The robot can also reason about what action pre-conditions are not fulfilled,
and what it can do to fix this. This is done by creating a planning agenda for
the action entity that only considers pre-condition axioms of the action:

?− en t i t y (Act , [an , act ion , [type , ’ ConnectingParts ’] ,
[assemblesConnection , Connection]]) ,

agenda create (Act , Agenda) ,
agenda next i tem (Agenda , Item) .

Item = ”detach PlaneBottomWing1 partOccludedBy PlaneUpperBody1”

Finally, the robot can reason about what action it should perform that es-
tablishes a planning decision in its belief state. It can, for example, ask what
action it should perform to dissolve the partOccludedBy relation between parts:

?− holds (usesActionMapper (Strategy ,Mapper)) ,
p roper ty range (Mapper , mapsItem , Pattern) ,
i n d i v i d u a l o f (Item , Pattern) ,
c a l l (Mapper , Item , Action) .

Action = [an , act ion , [type , ’PutAwayPart ’] ,
[movesPart , ’ PlaneUpperBody1 ’] , . . .] .

8 Conclusion

In this work, we have described how geometric reasoning procedures may be
incorporated into logic-based assembly activity planning to account for spatial
constraints in the planning process. The ontology used by the logic-based plan-
ner serves as an interface to the information provided by the geometric reasoner.
Geometric information is computed through decision procedures which are at-
tached to relation symbols in the ontology. Such relations are referred to in action
descriptions to make assertions about what should hold for parts involved in the
action before performing it. The planner, driven by finding asserted relations
that do not hold in the current situation, can also be used for planning how
the situation can be changed such that the preconditions become fulfilled. We
have demonstrated that this planning framework enables the robot to handle
workspace configurations with occlusions between parts, to reason about them,
and to plan sub-activities required to achieve its goals.

References

1. Akbari, A., Muhayyuddin, Rosell, J.: Reasoning-based evaluation of manipulation
actions for efficient task planning. In: ROBOT2015: Second Iberian Robotics Con-
ference. Springer (2015)

2. Akbari, A., Muhayyudin, Rosell, J.: Task and motion planning using physics-based
reasoning. In: IEEE Int. Conf. on Emerging Technologies and Factory Automation
(2015)

3. Balakirsky, S.: Ontology based action planning and verification for agile manufac-
turing. Robotics and Computer-Integrated Manufacturing 33(Supplement C), 21
– 28 (2015), special Issue on Knowledge Driven Robotics and Manufacturing

4. Balakirsky, S., Kootbally, Z., Kramer, T., Pietromartire, A., Schlenoff, C., Gupta,
S.: Knowledge driven robotics for kitting applications. Robot. Auton. Syst. 61(11),
1205–1214 (Nov 2013)

5. Beßler, D., Pomarlan, M., Beetz, M.: Owl-enabled assembly planning for robotic
agents. In: Proceedings of the 2018 International Conference on Autonomous
Agents. AAMAS ’18 (2018)

6. Çalli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Bench-
marking in manipulation research: The YCB object and model set and benchmark-
ing protocols. CoRR abs/1502.03143 (2015)

7. Fiorini, S.R., Carbonera, J.L., Gonçalves, P., Jorge, V.A., Rey, V.F., Haidegger,
T., Abel, M., Redfield, S.A., Balakirsky, S., Ragavan, V., Li, H., Schlenoff, C.,
Prestes, E.: Extensions to the core ontology for robotics and automation. Robot.
Comput.-Integr. Manuf. 33(C), 3–11 (Jun 2015)

8. J., M., K., N., H., B.: Describing assembly tasks in declarative way. In: IEEE/ICRA
Workshop on Semantics (2013)

9. Kootbally, Z., Schlenoff, C., Lawler, C., Kramer, T., Gupta, S.: Towards robust as-
sembly with knowledge representation for the planning domain definition language
(pddl). Robot. Comput.-Integr. Manuf. 33(C), 42–55 (Jun 2015)

10. Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach to single-query
path planning. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on. vol. 2, pp. 995–1001. IEEE (2000)

11. Muhayyudin, Akbari, A., Rosell, J.: Ontological physics-based motion planning for
manipulation. In: IEEE Int. Conf. on Emerging Technologies and Factory Automa-
tion. IEEE (2015)

12. Patel, R., Hedelind, M., Lozan-Villegas, P.: Enabling robots in small-part assembly
lines: The ”rosetta approach” - an industrial perspective. In: ROBOTIK. VDE-
Verlag (2012)

13. Perzylo, A., Somani, N., Profanter, S., Kessler, I., Rickert, M., Knoll, A.: Intuitive
instruction of industrial robots: Semantic process descriptions for small lot produc-
tion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 2293–2300 (2016)

14. Polydoros, A.S., Großmann, B., Rovida, F., Nalpantidis, L., Krüger, V.: Accurate
and versatile automation of industrial kitting operations with skiros. In: Towards
Autonomous Robotic Systems - 17th Annual Conference (TAROS). pp. 255–268
(2016)

15. Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, Palomo, L., Garćıa, N.: The
Kautham Project: A teaching and research tool for robot motion planning. In:
IEEE Int. Conf. on Emerging Technologies and Factory Automation (2014)

16. Schlenoff, C., Prestes, E., Madhavan, R., Goncalves, P., Li, H., Balakirsky, S.,
Kramer, T., Miguelanez, E.: An IEEE standard ontology for robotics and automa-
tion. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. pp. 1337–1342. IEEE (2012)

17. Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation planning with
probabilistic roadmaps. The International Journal of Robotics Research 23(7-8),
729–746 (2004)

18. Stenmark, M., Malec, J., Nilsson, K., Robertsson, A.: On distributed knowledge
bases for robotized small-batch assembly 12(2), 519–528 (2015)

19. Stilman, M., Kuffner, J.: Planning among movable obstacles with artificial con-
straints. The International Journal of Robotics Research 27(11-12), 1295–1307
(2008)

20. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning
among movable obstacles. In: Robotics and Automation, 2007 IEEE International
Conference on. pp. 3327–3332. IEEE (2007)

21. Sucan, I., Moll, M., Kavraki, L.E., et al.: The open motion planning library. Ro-
botics & Automation Magazine, IEEE 19(4), 72–82 (2012)

22. Tenorth, M., Beetz, M.: KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots. Int. Journal of Robotics Research 32(5), 566 – 590
(April 2013)

23. Varadarajan, K.M., Vincze, M.: Afrob: The affordance network ontology for robots.
In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on. pp. 1343–1350. IEEE (2012)

24. Zaplana, I.; Claret, J., Basañez, L.: Kinematic analysis of redundant robotic ma-
nipulators: application to kuka lwr 4+ and abb yumi. Revista Iberoamericana de
Automtica e Informtica Industrial. In press. (2017)

	Assembly Planning in Cluttered Environments through Heterogeneous Reasoning

