
Autonomous Robots (2019) 43:649–664
https://doi.org/10.1007/s10514-018-9748-z

Multi-robot grasp planning for sequential assembly operations

Mehmet Dogar1 · Andrew Spielberg2 · Stuart Baker2 · Daniela Rus2

Received: 29 March 2017 / Accepted: 2 April 2018 / Published online: 16 April 2018
© The Author(s) 2018

Abstract
This paper addresses the problem of finding robot configurations to grasp assembly parts during a sequence of collaborative
assembly operations. We formulate the search for such configurations as a constraint satisfaction problem (CSP). Collision
constraints in an operation and transfer constraints between operations determine the sets of feasible robot configurations.We
show that solving the connected constraint graph with off-the-shelf CSP algorithms can quickly become infeasible even for
a few sequential assembly operations. We present an algorithm which, through the assumption of feasible regrasps, divides
the CSP into independent smaller problems that can be solved exponentially faster. The algorithm then uses local search
techniques to improve this solution by removing a gradually increasing number of regrasps from the plan. The algorithm
enables the user to stop the planner anytime and use the current best plan if the cost of removing regrasps from the plan
exceeds the cost of executing those regrasps. We present simulation experiments to compare our algorithm’s performance to
a naive algorithm which directly solves the connected constraint graph. We also present a physical robot system which uses
the output of our planner to grasp and bring parts together in assembly configurations.

1 Introduction

We are interested in multi-robot systems that can perform
sequences of assembly operations to build complex struc-
tures. Each assembly operation in the sequence requires mul-
tiple robots to grasp multiple parts and bring them together
in space in specific relative poses. We present an example in
Fig. 1 where a team of robots assemble chair parts by attach-
ing them to each other. Once an assembly operation is com-
plete, the partially-assembled structure can be transferred to

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-018-9748-z) contains supplementary
material, which is available to authorized users.

B Mehmet Dogar
m.r.dogar@leeds.ac.uk

Andrew Spielberg
aespielberg@csail.mit.edu

Stuart Baker
spbaker@csail.mit.edu

Daniela Rus
rus@csail.mit.edu

1 School of Computing, University of Leeds, Leeds LS2 9JT,
UK

2 Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

subsequent assembly operations to be combined with even
more parts. We present an example sequence in Fig. 2.

In this paper, we propose an algorithm to plan multi-
robot grasping configurations to be used during a sequence
of assembly operations. We make some assumptions:

– We assume that our planner is given, as input, the
sequence of assembly operations, i.e. the order with
which the parts must be assembled. Given the structure
of the final assembly, such a sequence can be produced
either manually or by using an assembly planner (Wilson
1992; Wilson and Latombe 1994; Halperin et al. 2000;
Cortes et al. 2008; Knepper et al. 2013). Note that these
assembly planning algorithms output a sequence only in
terms of the assembly parts, not including the robots.

– We assume that local controllers exists to perform the fas-
tening/screwing operations once the parts are brought to
the pre-fastening/pre-screwing poses. This paper focuses
on the geometric and kinematic problem of grasping the
parts at the pre-fastening/pre-screwing poses. The gen-
eral fine manipulation problem of inserting a peg in a
hole under uncertainty is a critical one. While we do not
address this problem in this paper, we discuss existing
work in this area in Sect. 1.1.

The multi-robot sequential grasping problem imposes a
variety of constraints on the robot configurations. Consider

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9748-z&domain=pdf
https://doi.org/10.1007/s10514-018-9748-z


650 Autonomous Robots (2019) 43:649–664

Fig. 1 Three robots at an assembly configuration

the assembly operation scene in Fig. 1. We immediately see
one type of constraint: the robot bodies must avoid intersec-
tion. In effect, the robots must “share” the free space as each
of them grasps a point on the corresponding assembly part
and attains a base and arm configuration.

The sequential nature of the task, however, may impose
even more constraints. The robots may choose one of two
strategies to move a partially-assembled structure from one
assembly operation to the next (Fig. 2): (i) The robots can
regrasp, changing their grasp on the partially-assembled
structure, or (ii) they can transfer the partially-assembled
structure directly to the next operation, keeping the same
grasp.

Both strategies have their advantages. If the robots choose
transfer, this avoids extra regrasp operations during execu-
tion. Regrasps, on the other hand,make the planning problem
easier by decoupling operation sequences from each other:
In Fig. 2, since the robot commits to transfer the structure
between assembly operations 1 and 2, it must plan a grasp
of the part which works for both operations. The coupling
between multiple operations makes it extremely expensive
to solve problems that require long sequences of operations.

Humans use a combination of both strategies during
manipulation: we regrasp when we need to, but we are also
able to use transfer graspswhichwork formore thanoneoper-
ation. Given a sequence of assembly operations, how can a
team of robots decide when to regrasp and when to transfer?
In this paper, we present a planner with this capability. Our
planner builds on three key contributions:

– A formulation of this multi-robot planning problem as a
discrete constraint satisfaction problem (CSP);

– A planning algorithm for sequences of assembly opera-
tions, which simultaneously (i) decides on the assembly
operations to connect with direct transfers, and (ii) solves
the resulting CSP;

– An algorithm to plan regrasps of assemblies between
remaining operations.

CSP formulation
We formulate multi-robot grasp planning as a CSP. In

this representation every robot in every assembly operation
becomes a variable. Every variable must be assigned a value,
i.e. a robot configuration which grasps a particular part. We
construct a possible set of values by discretizing robot config-
urations that grasp the part.Wedefine two types of constraints
between variables: collision constraints between variables
of the same assembly operation; and transfer constraints
between variables in subsequent operations

We present the details of this CSP formulation in Sect. 3.

Planning for sequences of assembly operations
Ideally, the assembly is transferred from one operation to

the other smoothly for all operations in the sequence. This,
however, means having transfer constraints between all oper-
ations in the CSP. A complete solution requires solving for
all the assembly operations at once. In general, complete
CSP solvers display exponential worst-case complexity with
respect to the number of connected variables (Dechter 2003).
Solving the multi-robot grasp planning problem becomes
exponentially expensive with increasing number of assembly
operations. Similarly, if we can break some of these transfer
constraints and create multiple independent CSP problems,
we can reduce the planning time exponentially.

Here, we make a key and important assumption: Given
two valid grasps of an assembly, it is always possible to
regrasp, i.e. to transition from one grasp to the other (possi-
bly through a series of intermediate grasps). While one can
create overly constrained problems where this may not be
possible, in manufacturing and assembly domains, it is safe
to assume that robots will be given enough space to perform
regrasping operations of assembly parts, e.g. an empty patch
of floor space.

Relying on this assumption, our algorithm imposes only
a subset of the possible transfer constraints.

Whenour algorithm imposes a subset of the possible trans-
fer constraints, we recognize that not all transfer constraints
have the same level of difficulty; some takemore time to solve
than others. Our algorithm uses local search techniques for
CSPs (Minton et al. 1992) to identify the “easier” transfer
constraints and imposes them first. As solutions are found,
the algorithm imposes larger and larger sets of transfer con-
straints.

Our algorithm is an anytime planner: Given more time it
generates plans with fewer regrasps and more transfers. The
algorithm enables the user to stop the planner and use the
current best plan if the time it takes to remove more regrasps
from the plan exceeds a certain threshold (e.g. the time it
takes to plan and execute those regrasps).

An example output of this algorithm can be seen in the
top row of Fig. 2.

We present the details of this algorithm in Sect. 4.

123



Autonomous Robots (2019) 43:649–664 651

Fig. 2 A sequence of collaborative assembly operations to build a
chair. Top row: One robot maintains its grasp after assembly opera-
tion 1, transfering the partial-assembly directly to assembly operation
2. Maintaining a grasp is more difficult between assembly operations 2

and 3, due to geometrical constraints. Our algorithm detects this and a
regrasp is performed on the partial-assembly. Bottom row: The regrasp
is planned as a collaborative hand-off

Planning regrasps
The algorithm outputs a plan where some operations are

not connected with a direct transfer. For these operations a
regrasp must be planned. In this paper we present an addi-
tional algorithm to plan such regrasps. We show how to
plan a regrasp also as a multi-robot operation, in which one
of the robots of the former operation hands off the assem-
bly to another robot. The new robot grasps the assembly
in the way required for the latter operation. We model the
hand-off as a multi-robot CSP and solve it. An example
output of this algorithm can be seen in the bottom row of
Fig. 2.

We present the details of the regrasp planning algorithm
in Sect. 5.

This paper is a significantly extended and improved ver-
sion our work on multi-robot grasp planning (Dogar et al.
2015b). This version presents a completely novel re-grasp
planning algorithm (Sect. 5) and a new set of experiments
(Sect. 6).We also increased the number and variety of assem-
bly tasks we used in our experiments. We improved and
simplified the presentation of the CSP formulation and Algo-
rithm 1.

1.1 Related work

This work is related to two areas that have been traditionally
studied separately: multi-robot manipulation and manipula-
tion for assembly.

In multi-robot manipulation, the goal is moving an object
from an initial location to a goal location in an environment
with obstacles. Multiple robots may need to collaborate for
such a task because the reachable space of any individual
robot may be limited (e.g. when the robot arms are bolted to
the ground) or because an individual robot may not be able to
support the object in a stable manner. In each case, feasible
robot configurations and motion plans must be found where
multiple robots simultaneously grasp the object. The object
can also be re-grasped, either by placing it stably on a surface
and grasping it again, or by a direct hand-off between robots.
Recently there have been important progress in mapping out
the manipulation graph (Siméon et al. 2004) of this prob-
lem. Harada et al. (2014) developed the manipulation graph
for two arms. Dobson and Bekris (2015) then generalized
this to multiple arms and proposed methods to deal with the
complexity of the resulting problem.Building on earlierwork

123



652 Autonomous Robots (2019) 43:649–664

(Koga and Latombe 1994; Gharbi et al. 2009), these methods
provide a general framework for planningmulti-robotmanip-
ulation operations. In another line ofwork, Vahrenkamp et al.
(2010) propose a sampling-based algorithmwhich can simul-
taneously plan feasible and stable multi-robot grasps of an
object and the motion of the robots to attain these grasps.

In addition to multi-robot manipulation, our problem is
also related to work in manipulation for assembly, during
which a robot assembles multiple parts together at specific
relative poses sequentially (Wan et al. 2015;Wan andHarada
2016). These algorithms use re-grasp graphs to identify the
sequence of grasps of an object to bring it into the desired
grasp. When compared with ours, an important advantage of
this line of work is the ability to use a support surface (such
as a table or a floor) to place objects in stable configura-
tions and grasp them again. Instead, our approach focuses on
multi-robot planning of operations. In our approach, some
robots hold the partial assembly for other robots to add
more assembly parts or simply to re-grasp. This can be nec-
essary, because a stable placement of the partial assembly
on a support surface cannot always be found such that the
next assembly operation is geometrically feasible. Multi-
robot planning also enables robots to assemble multiple parts
simultaneously, instead of assembling them one by one.

Our approach takes future assembly operations into
account by treating them as constraints during planning.
Therefore, it is also related to work in grasp planning that
take into account task constraints (Berenson and Srinivasa
2008; Berenson et al. 2011; Dang and Allen 2012). Unlike
previous work, however, we focus on planning such grasps
in a sequential and multi-robot context. This results in addi-
tional constraints and computationally expensive problems
due to the potentially high number of sequential steps in an
assembly task. Our algorithms are tailored to solve exactly
this problem: how to deal with constraints that arise due to
sequential and multi-robot operations. A particular strategy
we use is the progressive application of constraints which is
similar to the approaches in Ferbach and Barraquand (1997)
and Bayazit et al. (2005).

The effectiveness and necessity of regrasping during
manipulation have been recognized for a long time (Lozano-
Pérez et al. 1987; Siméon et al. 2004). We show that, by
assuming feasibility of regrasps, we can simplify the CSP
solutions of manipulation plans significantly. Structures sim-
ilar to the grasp-placement space (Tournassoud et al. 1987)
or the grasp-graph (Dafle et al. 2014) can be precomputed
to satisfy our regrasp feasibility assumption.

Our algorithm takes as input a sequence of relative poses
of assembly parts. A seminal problem in robotics is assem-
bly planning which addresses the problem of finding such
sequences given the final assembled structure and its parts.
Efficient algorithms have been developed to address this
problem (Wilson 1992; Wilson and Latombe 1994; Halperin

et al. 2000; Cortes et al. 2008; Knepper et al. 2013). How-
ever, assembly planning algorithms do not represent robots;
instead they solve the problem only in terms of the motion
and configuration of the assembly parts. In this paper we
focus on planning the robot grasps and configurations for an
assembly plan. We assume we are given the assembly plan,
i.e. a sequence of parts to be assembled.

Our problem can also be thought as an instance of com-
bined task and motion planning (TAMP) (Cambon et al.
2009; Bhatia et al. 2010; Kaelbling and Lozano-Pérez 2011;
Kaelbling and Lozano-Pérez 2013; Srivastava et al. 2014;
Dellin and Srinivasa 2015). From this point of view, a planner
can be developed that takes as input only the final assembly.
The planner can then simultaneously generate the assembly
plan, the robotic grasps on the parts, and the robots’ motion.
However, the computational complexity associated with the
above TAMP planners make it infeasible to solve the long
sequence ofmulti-robot problems thatwe attack in this paper;
e.g. in Sect. 6we solve tasks that require 80 distinct stepswith
5 robots taking part in each of these steps. While we aim to
target such a general solution as future work, in this paper
we take a step in that direction by solving the problem for a
given high-level assembly plan.

Within the TAMP framework, recent work by Lozano-
Pérez and Kaelbling (Lozano-Pérez and Kaelbling 2014) is
particularly relevant to our formulation, since it also rep-
resents sequential manipulation problems as CSPs. These
geometric CSPs are formulated by a higher-level task plan-
ner. Their focus is on the interface between the task planner
and the CSP formulation, and they propose methods for con-
structing the CSPs efficiently. The CSPs are then solved by
an off-the-shelf solver. We propose an algorithm to solve
the CSP itself using multiple robots and domain-specific
assumptions, such as feasible regrasps.

During the transfer of a partially-assembled structure from
one operation to the next, our planner needs to select a loca-
tion on the assembly for the robot to grasp on. Some locations
may be easy to find solutions for, and others may be dif-
ficult or even impossible. This is an important problem in
multi-step planning (Bretl 2006; Hauser et al. 2005) where
the planner, considering a constraint among other possible
choices, needs to identify how difficult, or impossible, it
would be to solve that specific constraint. Our approach,
based on representing the problem as a constraint graph,
allows us to use the smallest local neighborhood of a con-
straint in which it can be solved as a measure of how difficult
it is to solve the constraint. This enables us to identify and
solve the easier constraints first.

We use complete and local methods to solve CSPs. There
is extensive literature in this area (see Dechter 2003 for a
thorough overview). The compact treatment in Russell and
Norvig (2003) covers all the CSP methods we use.

123



Autonomous Robots (2019) 43:649–664 653

Fig. 3 a An example assembly operation to bring three parts together:
the side of a chair, the back of a chair, and a fastener. b The constraint
graph for the assembly operation where each edge represents collision
constraints between grasping robots. c A multi-robot grasp configura-
tion for the assembly operation

In this work, we assume that local controllers exist to per-
form insertion/fastening operations once the assembly parts
are brought to the pre-insertion poses. This is, however, a
critical and non-trivial problem in fine manipulation under
uncertainty (Lozano-Perez et al. 1984). In previous work,
we used a compliant shape for the fastener tip, such that the
fastener is guided by the hole during insertion to deal with
such uncertainty (Dogar et al. 2015).

2 Problem

An assembly is a collection of parts at specific relative poses.
A simple part by itself is also a (trivial) assembly. Robots per-
form an assembly operation, o = (Ain, aout , p), to produce
an output assembly aout from a set of input assemblies Ain.
We also assume that a three-dimensional pose in the envi-
ronment, p, is specified as the location of an operation.

We present an example assembly operation in Fig. 3a.
During an assembly operation, input assembliesAin must

be grasped and supported by robots at their respective poses
in aout at operation pose p. We assume that a local controller
exists to perform the fastening/screwing, once the parts are
at the poses specified by the assembly operation.

We do not assume that the robots start with the parts
grasped in their hands. Instead, we assume that, initially, the
parts are positioned somewhere in the environment (e.g. on
the floor or on a desk) and the robots have to find a feasi-
ble initial grasp to pick them up, avoiding any environmental
collisions at this initial pose of the part (e.g. the floor or the
desk). For example, each of the three parts in Fig. 3a-a (the
side of the chair, the back of the chair, and the fastener) must
be picked up from such initial locations. Our definition of
an assembly operation also applies to this initial grasp of a
single part a, where Ain = {a} is a singleton, aout = a, and
p is the initial pose of part a in the environment.

A robot can grasp an assembly by placing its gripper at
certain poses on the assembly. We assume we can compute

Fig. 4 Example grasps for assembly parts

a set of such poses, grasps, for each assembly a. We illus-
trate example grasps for simple parts in Fig. 4. We use Q to
represent the robot configuration space, which includes base
pose and arm joint configurations. If a configuration q ∈ Q
places the robot gripper at a grasping pose for assembly a
during operation o, we say that “q is grasping a during o”.
The robotsmust avoid collisions during assembly operations.

Robots perform an ordered sequence of assembly oper-
ations O = [oi ]Ni=1 to gradually build large complex struc-
tures: output assemblies of earlier operations are used as
inputs in later operations. Robots move the assemblies from
one operation to the next.

As an example, we present a sequence of assembly opera-
tions to build a chair in Fig. 5a. This example includes eleven
operations: three operations in which multiple parts must be
assembled, and eight operations where each single part (the
leftside of the chair, rightside of the chair, the seat, the back of
the chair, and four fasteners) must be grasped at their initial
poses. Each arrow indicates an instance where robots move
an assembly from one operation to the next.

Given a sequence of assembly operations, we formulate
the problem of multi-robot grasp planning for sequential
assembly operations as finding grasping configurations for
all the robots required by the assemblies in all the operations.

2.1 Moving assemblies between operations

Suppose o = (Ain, aout , p) and o′ = (A′
in, a

′
out , p

′) are two
operations such that aout ∈ A′

in; i.e. the output assembly
of o is one of the input assemblies of o′. We call o and o′
sequential operations. aout must be moved to o′ after o is
completed. There are two ways this can be done: transfer
and regrasp.

To directly transfer aout , one of the robots grasping an
assembly inAin can keep its grasp and carry aout to o′. There
is flexibility; any a ∈ Ain may be used for the transfer as
long as the grasp is stable for the output assembly. For exam-
ple, after the assembly operation 1 in Fig. 2, the assembled
structure can be transferred either by the grasp on the back
of the chair as in the figure, or by the grasp on the side of the
chair (i.e. by the robot on the bottom-left corner in assembly
operation 1).

123



654 Autonomous Robots (2019) 43:649–664

Fig. 5 The chair assembly example.We represent a sequence of assem-
bly operations (a) as a constraint graph (b). Our algorithm starts by
solving the constraint graph with no transfer constraints (c). Then it
imposes increasing numbers of transfer constraints to the graph and
tries to solve them in a small local neighborhood of the graph (d). For a
certain number of transfer constraints, n, our algorithm iterates over all

possible n-combinations of transfer constraints until it can solve one.
If none can be solved, our algorithm enlarges the search neighborhood
and tries again (e). a Assembly operations for a chair, b A complete
constraint graph for the chair, c No transfer constraints, d Trying to
impose one transfer constraint, e Searching a larger neighborhood

The alternative to directly transfering is to regrasp aout .
Robots can regrasp an assembly in different ways: e.g. by
first placing it on the floor in a stable configuration and then
grasping it again, or with the help of other robots that can
temporarily grasp and support the assembly while it is being
regrasped. The important implication for our planning prob-
lem is that the new grasp of aout can be different from the
grasps of all a ∈ Ain. An example is the regrasp after the
second assembly operation in Fig. 2.

3 CSP formulation

We formulate multi-robot grasp planning for assembly as a
discrete constrained satisfaction problem (CSP).

ACSP is a triple 〈X,D,C〉, whereX is the set of variables;
D(x) is the domain of variable x , i.e. the discrete set of values
that x can be assigned with; and C is the set of constraints.
A solution to the CSP is an assignment of a value to each
variable, such that all the constraints are satisfied.

3.1 CSP for a single assembly operation

To plan robot grasping configurations for an assembly oper-
ation we can create a CSP and solve it. Below, given an
assembly operation o = (Ain, aout , p), we show how to

construct the three components of the CSP, 〈Xo,Do,Co〉,
representing the planning problem for the operation.

Variables: We create one variable for the grasp of each
input assembly of the operation.1 We use xa to represent the
variable corresponding to the grasp of assembly a. Formally,

Xo = {xa | a ∈ Ain} (1)

Domains The domain of the variable xa is the set of robot
configurations grasping the assembly:

Do(x
a) = {q ∈ Q | q is grasping a.} (2)

In general there can be a continuous set of robot configu-
rations grasping a, due to redundancy in the kinematics or
due to a continuous representation of grasping gripper poses
on a part. We discretize this continuous set by sampling
uniformly. For each assembly, these grasping configura-
tions must achieve stability and must avoid self-collision and
collision with environmental constraints. These checks are
performed as the domain for a variable is constructed, and
grasp configurations are removed from the domain if they do

1 If an assembly requires multiple robots to grasp and carry it, e.g. due
to its weight, we can create as many variables as there are grasps. For
the sake of simplicity, we assume that each assembly can be carried by
a single robot in the rest of the paper, but the method can be generalized
to multiple grasps.

123



Autonomous Robots (2019) 43:649–664 655

not give a stable grasp, are in self-collision, or are colliding
with environmental obstacles.

Constraints Different types of kinematic and static con-
straints can be defined for the robot configurations.We define
a collision constraint, c(x, x ′), which enforces that two robot
configurations assigned to x and x ′ do not collide. We create
a collision constraint between each pair of variables of the
assembly operation.

Co = {c(x, x ′) | for all x and x ′ in X, s.t.x �= x ′.} (3)

Given a CSP, we can represent the variables and con-
straints in a constraint graph. In this graph, there is a node
for each CSP variable, and an edge between two nodes if a
constraint exists between the variables. In Fig. 3b we show
a constraint graph for the operation shown in Fig. 3a. Each
node corresponds to the grasp of a certain part during a certain
operation. In the figure, we show the image for the operation
inside the node and highlight the image of the part which
should be grasped for that variable. The edges between nodes
correspond to the collision constraints.

The solution to this CSP gives us non-colliding robot
grasping configurations for the assembly operation. An
example can be seen in Fig. 3c.

We are, however, further interested in finding such con-
figurations for a sequence of assembly operations.

3.2 CSP for a sequence of assembly operations

Given an ordered sequence of assembly operations O =
[oi ]Ni=1, we can create a planning problem by combining the
CSPs of each operation into one big CSP. Solving this CSP
will be equivalent to solving the CSP of each operation one
by one, and will give us non-colliding robot configurations
for each operation. This solution, however, will not work if
we want robots to directly transfer the assemblies between
operations.

We can account for direct transfers by imposing additional
constraints between variables of sequential operations.Given
two sequential assembly operations o = (Ain, aout , p),
o′ = (A′

in, a
′
out , p

′) such that aout ∈ A′
in, and an assembly

a ∈ Ain, we can create a transfer constraint between two
variables t(oxa, o

′
xaout ), where oxa refers to the CSP vari-

able in operation o, and o′
xaout refers to the CSP variable in

operation o′. A transfer constraint enforces that robot con-
figurations assigned to oxa and o′

xaout grasp the same part
while placing the robot gripper at the same pose on the part. If
the CSP with this constraint has a solution, then the assem-
bly aout can be transferred directly from o to o′ using the
grasp on a. We can also choose not to impose any transfer
constraints between o and o′. The robots will then need to
perform a regrasp between these operations.

Therefore, given a sequence of assembly operations,
O = [oi ]Ni=1, and a set of transfer constraints we would like
to impose, T, we can construct a combined CSP, 〈X,D,C〉,
for the planning problem:

X = ∪N
i=1Xoi

D = ∪N
i=1Doi

C = T ∪ ∪N
i=1Coi

(4)

In Fig. 5b we show a constraint graph for the chair assem-
bly operation sequence. Light gray edges correspond to
collision constraints, and dark edges correspond to transfer
constraints. In this graph all operations are connected with
transfer constraints: If we can find a solution, the robots will
not need to perform any regrasps.

3.3 Solving a CSP

Having formulated the multi-robot grasp planning problem
for sequential assembly operations as a CSP, we can use
existing CSP algorithms to solve it. Backtracking search is
a widely used and complete algorithm for solving CSPs. It
searches forward by assigning values to variables such that
all assignments obey the constraints. If at any point the algo-
rithm cannot find a value for a variable which obeys the
constraints, it backtracks by undoing the most recent assign-
ment. The search continues until an assignment is found for
all variables. If there is no solution, backtracking search tries
all combinations of value assignments. The worst-case time
complexity of naive backtracking search is exponential in the
number of CSP variables. One can use domain-independent
heuristics to prune the search space. Minimum remaining
value and forward-checking (Russell and Norvig 2003) are
two widely used heuristics. Using these heuristics, in the
worst-case, bactracking search time complexity is exponen-
tial in the number of variables in the largest connected part
of the constraint graph.

In our problem, if we impose transfer constraints between
all operations, we end up with a fully connected constraint
graph. Therefore, in the next section, we propose an algo-
rithm which imposes only a subset of the possible transfer
constraints.

Another approach to solving CSPs is by focusing on a
local neighborhood of the constraint graph so that the com-
putation time is not affected by the total size of the graph.
These local techniques start with an initial assignment of
values to variables, identify the conflict regions in the con-
straint graph, and try to resolve the conflicts only in the local
neighborhood of the conflicts. One can use different meth-
ods in the local neighborhood, e.g. a complete method like
the backtracking search or a heuristic-based search like the
min-conflicts (Minton et al. 1992) algorithm which greedily

123



656 Autonomous Robots (2019) 43:649–664

minimizes the number of conflicts in the graph. For the min-
conflicts algorithm, a local neighborhood is enforced usually
by limiting the maximum number of steps the algorithm is
allowed to run before giving up.

4 Algorithm

Wewould like to find solutionswhich involve a small number
of regrasps, since each regrasp in the solution will require
extra time to plan and execute.

A naive way to find solutions with minimum number of
regrasps would be to create transfer constraints between all
operations and try to solve the resulting CSP (e.g. the graph
in Fig. 5b) with an algorithm such as backtracking search. If
this succeeds we have found a solution with no regrasps. If
it fails, we can remove one of the transfer constraints and try
to solve the resulting CSP problem again to find a solution
with one regrasp. If this fails, we can try removing a different
transfer constraint, and if that fails, we can try removing two
transfer constraints to find a solution with two regrasps; and
so on. We call this the naive CSP solution.

The problem with the naive CSP solution is that it tries to
solve the most difficult problems first: The CSP graph where
operations are connected with transfer constraints make the
search space exponentially larger. This approach quickly
becomes infeasible (see Table 1 in Sect. 6), requiring hours
to solve problems with only a few operations.

Instead, we propose an algorithm (Algorithm 1) which
first solves the easiest problem, the constraint graph with no
transfer constraints, and then tries to improve the solution
by imposing an increasing number of transfer constraints as
more time is given.

This approach has two advantages. First, it leads to an any-
timeplannerwhichproduces a solution quickly and improves
it as more time is given. Second, and more importantly, this
approach enables us to search in the space of combinations of
transfer constraints, identify the combinations that are easier
to solve, and solve them first. This cherry-picking of transfer
constraint combinations helps us maximize the number of
transfer constraints solved in the time allocated to the any-
time planner.

4.1 Generating the plan with no direct transfers

We first assume no transfer constraints between operations.
Collision constraints remain, but they only constrain vari-
ables within an operation. In Fig. 5c, we show this graph for
the chair assembly example.

We construct the corresponding CSP and solve it using
a complete CSP solver (lines 1–2 in Algorithm 1). Since
the constraint graph is divided into N connected compo-
nents (where each connected component corresponds to one

Algorithm 1Multi-Robot Grasp Planning for Assembly

Input: O = [oi ]Ni=1 is a sequence of assembly operations.
1: 〈X,D,C〉 ← ConstructCSP(O) 	 Using Eq. 1-4 with T = ∅.
2: ini tial_assignment ← CompleteSearch(〈X,D,C〉)
3: for n = 1 to maximum number of transfer constraints do
4: for enlarging constraint-graph neighborhood h do
5: for all T in the set of n-combinations of transfer constraints

do
6: sol ← LocalSearch(〈X,D,C ∪ T〉,

ini tial_assignment , h)
7: if sol exists then
8: current_best ← sol 	 current_best is the best

solution so far. The planner can be stopped ‘any-time’.
9: Continue at line 3

assembly operation), solving the complete problem at this
point is equivalent to solving a CSP for each operation sep-
arately, and is therefore fast. Any complete CSP solver can
be used. We use a custom implementation of backtracking
search with minimum remaining value heuristic and forward
checking.

The solution on line 2 provides us with an initial assign-
ment of values to variables. At this point we already have
a plan, but it is inefficient since executing the plan requires
each sequential operation to be interleaved with regrasps.

4.2 Imposing transfer constraints

Once the initial assignment is found, our algorithm starts
imposing a gradually increasing number of transfer con-
straints (line 3) to reduce the number of regrasps. Figure 5d
shows one example transfer constraint added to the graph.
Between lines 4–9, the algorithm attempts to solve n trans-
fer constraints. If a solution is found, it is recorded as the
current best solution (line 8), and the algorithm progresses to
n+1 transfer constraints (line 9). One can stop the algorithm
anytime and use the current best solution.

The algorithm tries to solve for n transfer constraints as
quickly as possible. The algorithm iterates over all valid n-
combinations of transfer constraints (line 5). This enables the
algorithm to attempt to solve for a different set of n trans-
fer constraints in each iteration, instead of us specifying a
particular ordering of the constraints. However, some com-
binations of transfer constraints can bemore difficult to solve
for compared to others. Therefore, instead of using a com-
plete search and losing time on difficult combinations, our
algorithm performs a local search (line 6) which succeeds or
fails quickly in a small neighborhood of the constraint-graph.
Local search neighborhood size starts small (Fig. 5d). But, if
no solution is found after trying all n-combinations of trans-
fer constraints, the neighborhood gets larger (Fig. 5e) (line
4 in Algorithm 1). Local search variables can be initialized
with values using the initial assignment (line 6) or the current

123



Autonomous Robots (2019) 43:649–664 657

best solution. In our implementation we use the current best
solution as a heuristic to speed up convergence.

When the algorithm is stopped, the current best solution
may require the robots to perform regrasping between certain
assembly operations. We present a planner for regrasping in
Sect. 5.

4.3 Analysis

We discuss several important properties of our algorithm.

4.3.1 Completeness

Since it relies on a discretization of the robots’ configuration
spaces, it can easily be shown that Algorithm 1 is resolution-
complete.

Proposition 1 Algorithm 1 is resolution-complete, i.e. it can
find a set of valid grasping configurations if such a set exists.

Proof We use a discrete CSP representation which requires
the discretization of the robot configuration space. Assume
we are given a resolution with which to discretize. If the
algorithm is unable to find a solution with no transfers (as
computed on line 2), then the only constraints that the algo-
rithm is unable to satisfy must be those within assembly
operations (i.e. collision constraints). This implies one of
the following: either the input problem itself is infeasible, or
no solution exists at the given resolution of discretization.
At a high enough sampling resolution, the second problem
disappears. ��

In practice, however, it is difficult to implement a
resolution-complete version of our planner. The size of the
discretized configuration space grows exponentially with the
degrees-of-freedom of the robots. Therefore, a discretization
with a very high resolution quickly becomes infeasible.

Moreover, the completeness with respect to the grasping
configurations does not imply completeness with respect to
the complete motion planning problem. First, re-grasps may
not be feasible between sequential robot configurations with
diffrent grasps. Second, collision-free motion may not be
feasible between sequential robot configurations during a
transfer.

4.3.2 Optimality

We define optimality as returning the solution requiring the
minimum number of regrasps. We do not necessarily aim
for optimality: if the time required to remove more regrasps
from the plan is more than the time required to execute those
regrasping operations, we would like to stop planning and
start execution. For this reason, in our implementation we
use the greedy min-conflicts algorithm for our local search.

In practice we have found it to produce good results, how-
ever, min-conflicts does not guarantee optimality and may
get stuck in local minima.

Algorithm 1, nevertheless, can be an optimal planner if
a complete algorithm, e.g. backtracking search, is used to
search the local neighborhood (the LocalSearch function
on line 6).

Proposition 2 If a complete local search is used, then Algo-
rithm 1 returns the minimum regrasp solution.

Proof Our algorithm can terminate early with a suboptimal
solution only when it cannot improve the solution via local
search for a given number of constraints. However, our algo-
rithmwill expand the local neighborhood to include the entire
constraint-graph before failing (line 4). If the local search
is complete, then this becomes a complete search of the
constraint-graph, and a complete search must always find
an improvement if it exists. The algorithm cannot terminate
if it has not found an optimal solution, and thus it will always
return the optimal solution. ��

4.3.3 Complexity

The naive CSP solution has an exponential worst-case run-
timeO(exp(nm)), where n is themaximumnumber of robots
involved in assembly operations and m is the number of
assembly operations (nm is the total number of CSP vari-
ables). By comparison, our algorithm’s initial solution has the
worst-case runtime O(m exp(n))—exponential in the num-
ber of robots per assembly operation but linear in the number
of assembly operations (since each operation can be solved
independently). Since n is typically small in practice, find-
ing initial solutions is quick. The complexity associated with
improving the initial solution depends on the local search
technique used. If a complete method such as backtrack-
ing search is used, the complexity of improving the solution
will approach the complexity of the naive CSP algorithm as
more transfer constraints are imposed. We have, however,
found the min-conflicts greedy search to be a good trade-
off between improvement speed and optimality. As we show
in Sect. 6 min-conflicts improve the solution quickly and
reduces the number of regrasps effectively. This is practical
for real-world applications where a small number of regrasps
is feasible.

5 Collaborative regrasping

Algorithm 1 can produce plans such that a regrasp is required
between operations. It is, however, agnostic to how these
re-grasps may be realized. There are many different ways
an assembly can be re-grasped. In Sect. 1.1 we present re-
grasping approaches that use a surface to place and then pick

123



658 Autonomous Robots (2019) 43:649–664

an object with a new grasp, that use dynamic regrasping to,
for example, throw an object into the air and grasp again, and
other methods. The re-grasps in the output of Algorithm 1
can be realized using any of these methods.

In this section, we also present one method to plan such
regrasps. Particularly, we show how we can plan a regrasp
also as a multi-robot collaborative operation.

A regrasp is required between two operations if the robots’
grasps of the assembly in the former operation are different
from the grasp planned for the latter operation. An example
is shown in Fig. 2 top row, between operations 2 and 3. In
this case the assembly must be regrasped to achieve the grasp
planned for the next operation. We plan such a regrasp as a
collaborative operation (Fig. 2 bottom row), in which one of
the robots of the former operation hands off the assembly to
another robot. The new robot grasps the assembly in the way
required for the latter operation.

A hand-off requires both robots to be grasping the assem-
bly simultaneously. Given two sequential operations o and o′
which require a regrasp in between, we can model a hand-off
as a CSP, 〈X,D,C〉, similar to the problem defined in Sect. 3:

VariablesWe create two variables for the hand-off opera-
tion, xgiver and xtaker , corresponding to the two robots taking
part in the hand-off:

X = {xgiver , xtaker } (5)

Values The set of values for the variable xgiver is the set of
robot configurations grasping the assembly using one of the
grasps in o. We denote this set Qini tial . The set of values for
the variable xtaker is the set of robot configurations grasping
the assembly using the grasp required by o′. We denote this
set Qgoal :

D(xgiver ) = Qini tial

D(xtaker ) = Qgoal
(6)

ConstraintsWe impose a collision constraint between the
giver and the taker during the hand-off:

C = {c(xgiver , ctaker )} (7)

This results in a small CSP problem which can be solved
directly using a complete search algorithm.

Until now, however, we assumed that a regrasp is possible
through a single hand-off. This is usually true, but there may
be cases where intermediate grasps are needed. For exam-
ple if the giver grasp and the taker grasp are very close to
each other, it may be impossible to perform a hand-off while
avoiding collision. In such a case we fail to solve the CSP
problem. We can then construct a new CSP for a hand off
with intermediate steps.

Algorithm 2Multi-Robot Planning for Regrasping
Input: Qini tial : The robot configurations corresponding to the initial

grasps of the assembly. Qgoal : The robot configurations corre-
sponding to the goal grasp of the assembly. Q: All possible robot
configurations to grasp the assembly.

1: for steps = 0 to MaxNSteps do
2: Initialize X, D, and C as empty sets.
3: for i = 0 to steps do
4: X ← X ∪ {xgiveri , xtakeri }
5: C ← C ∪ {c(xgiveri , xtakeri )}
6: if i > 0 then
7: C ← C ∪ {t(xtakeri−1 , xgiveri )}
8: D(xgiver0 ) ← Qini tial
9: D(xtakern ) ← Qgoal
10: D(x) ← Q for all x except xgiver0 and xtakern
11: sol ← CompleteSearch(〈X,D,C})
12: if sol exists then
13: return sol

Algorithm 2 is a general algorithm for collaborative
regrasping with multiple intermediate steps. The algorithm
takes as input the robot configurations corresponding to the
initial grasps of the assembly, the robot configurations corre-
sponding to the goal grasps of the assembly, and all possible
robot configurations to grasp the assembly at a pre-defined
hand-off location in the environment. The algorithm tries
to solve the CSP corresponding to a regrasp. If it fails, it
increases the number of intermediate steps (line 1) and tries
again. For each such attempt a CSP is constructed by cre-
ating two variables—giver and taker—for each handoff and
imposing collision constraints between them (lines 4–5). The
assembly must be transferred between intermediate hand-
offs, which are expressed as transfer constraints (line 7).
The domain of the first giver and the final taker are quite
constrained (lines 8,9), but the robots are free to grasp
the assembly however they can during intermediate steps
(line 10). We present example regrasping plans in Sect. 6.

6 Experiments and results

We implemented and evaluated our algorithms on a vari-
ety of assembly tasks in simulation and using a physical
testbed. In this section we present these experiments. We
implemented our algorithms in the OpenRAVE environment
(Diankov 2010). We used teams of 4 and 5 Kuka YouBot
robots2 for the simulated and physical experiments.

6.1 Comparison to the naive approach

We first present an example task which demonstrates our
planner’s ability to identify difficult transfer constraints and

2 http://www.youbot-store.com.

123

http://www.youbot-store.com


Autonomous Robots (2019) 43:649–664 659

Fig. 6 Key frames of a chair assembly plan. a, b, d are assembly operations, while c is a regrasp. Our planner chooses to perform a regrasp right
before the highly constrained four-robot operation (d)

to plan regrasps instead of solving those constraints. We do
this by comparing our planner with the naive CSP planner.
Naive CSP planner This planner, described in Sect. 4,
attempts to solve the complete CSP with all the operations
connected by transfer constraints. It uses off-the-shelf CSP
solver algorithms. In our implementation we use backtrack-
ing search.
Our planner Our planner first uses Algorithm 1 to find
an increasingly better solution. If the solution cannot be
improved (in other words, if no new transfer constraint can
be solved) for a certain duration, Algorithm 1 is stopped, and
then the remaining sequences of operations are connected
through regrasping (Algorithm 2). In our experiments, Algo-
rithm 1 stops if the solution cannot be improved for 15 s. The
planning time is the total time it takes to run Algorithms 1
and 2.

We compare these two planners using two versions of the
chair assembly task,whichwecall theChair task and theSim-
ple Chair task. The Chair task, presented in Fig. 5a, includes
as its last step an operation that requires four robots to collab-
orate. Planning for four robots simultaneously (for example
see Fig. 6d) limits the number of grasps and configurations
available to the robots, which creates a highly constrained
CSP. The Simple Chair task is a simplified version of the
Chair task, where the final step requires only three robots
because one of the fasteners is removed from the assembly.
The Chair task requires eleven assembly operations (includ-
ing the initial grasp of eight parts), whereas the Simple Chair
task requires ten assembly operations (including the initial
grasp of seven parts).

In our experiments we ran each planner 50 times for each
task. Each run was given a time limit of 30min. To construct
the CSP problems, we used the exact same sets of domains
(uniformly discretized grasps and robot configurations) for
the naiveCSP planner and our planner.We randomly shuffled
the order of these lists between runs to average out a specific
order’s effect to the planning time.

Both the Naive CSP planner and our planner were able
to solve the Simple Chair task within the time limit in all 50
runs.We present the average planning times in the first row of

Table 1 Planning times averaged over 50 runs

Task Naive CSP (s) Our planner (s)

Simple Chair 21.3 15.4

Chair (Fig. 5a) >711.9 25.6

SD: 27.7 s (Naive CSP on Simple Chair), 11.1 (our planner on Simple
Chair), 10.7 (our planner on Chair). We do not have complete data for
the Naive CSP planner on the Chair task, since 19 runs timed out and
were stopped before generating a plan. Still, the average planning time is
guaranteed to be larger than 711.9 s. This is computed by optimistically
assuming that these 19 runs were going to generate a plan the moment
after they timed out

Table 1. Our planner is slightly faster than the Naive CSP for
this task.3 This is due to our algorithm’s use of regrasps. The
Naive CSP planner solves the complete graph in all 50 runs.
In 44 out of 50 cases our algorithm alsomanages tominimize
the number of regrasps to zero. In 6 out of 50 cases, however,
Algorithm 1 cannot solve the final transfer constraint for 15 s,
is interrupted, and Algorithm 2 kicks in to plan a regrasp. In
these 6 cases, the average time Algorithm 2 takes to plan a
regrasp is 0.07 s with negligible standard deviation.

The advantage of our planner becomes more apparent
when we compare the two planners on the more difficult
Chair task (second row of Table 1). First, our planner is much
faster. Second, the Naive CSP planner runs out of the 30min
time limit in 19 out of the 50 runs, while our planner finds
a solution for all 50 runs. In 40 out of 50 runs our planner
finds a plan with one regrasp, in 2 runs it finds a plan with
two regrasps, and in 8 runs it manages to find a solution with
no regrasps. The average time Algorithm 2 takes to plan each
regrasp is, again, 0.07 s with negligible standard deviation.

We show the time profile of our algorithm in Fig. 7. The
plot is divided into three parts. The first part, shown in red,
takes 9.6 s, during which a complete search is performed
on the graph without the transfer constraints. This corre-
sponds to the first two lines of Algorithm 1. The transition
from the red to the green part marks when the planner has

3 A two-sample t-test barely rejects (P = 0.09) the null hypothesis that
our planner is slower than the Naive CSP.

123



660 Autonomous Robots (2019) 43:649–664

Fig. 7 The time profile of our planner on the chair assembly with 4-
robot operations. This plot is drawn by averaging the 40 (out of 50)
runs on the Chair task for which our planner finds a solution with one
regrasp. The average planning time of these 40 runs were 31s

Fig. 8 The Stairs-25 goal assembly with 25 steps, requiring a total of
76 assembly operations connected by 75 transfer constraints

the first solution. At this point, all of the 10 connections
between operations are marked as regrasps. Our algorithm
starts to impose increasing numbers of transfer constraints
(Algorithm 1, lines 3–9). At the beginning the algorithm
quickly solves the easy transfer constraints, and the num-
ber of regrasps is gradually reduced to 6 within one second.
As time progresses, it takes longer to find solutions to transfer
constraints. This is not only because the graph becomesmore
and more connected, but also because specific transfer con-
straints are harder to solve and our algorithm identifies these
constraints (using expanding local search neighborhoods)
and postpones their solution. (This can for example be seen in
Fig. 6, where the planner chooses to perform a regrasp right
before the highly constrained four-robot operation.) When
the planner reaches one regrasp, it cannot improve the solu-
tion further and after 15 sAlgorithm1 is stopped.Algorithm2
plans a regrasp for the remaining connection in the graph,
which is shown by the small orange extension in the plot.

We present an example plan with a regrasp in Fig. 6.
Another example plan was presented in Fig. 2. A video
version of a complete plan can be seen in the multimedia
extension of this paper.

6.2 Scaling up to long assembly sequences

We performed further tests to show how our algorithm scales
with large assembly tasks. We created two different task
types. In the first (Fig. 8) the robots attach square parts to each
other to create a series of steps. The task instance Stairs-N
refers to the case where the robots assemble N steps. Each
step takes three robots to assemble. In the second type, shown
in Fig. 9, the robots build a grid structure using the same
square parts. The task instance Grid-N×N refers to a N ×N
grid. Each grid cell requires five robots working together
(except the very first operation), which makes every single
operation difficult to plan due to spatial constraints.

We ran the Naive CSP planner and our planner on differ-
ent instances of these tasks.We ran each planner ten times on
each task instance. We gave the planners one hour to run. In
this set of experiments, to see our planner’s ability to reduce
the number of regrasps, we did not stop Algorithm 1 even
after itwas not able to improve the solution for a long time;we
kept it running until the one hour limit was reached. Table 2
summarizes the results. The naive planner returned no solu-
tion within one hour for the four larger tasks. Our algorithm,
however, was able to return solutions in all cases.

In these experiments we ran Algorithm 1 for an hour to
observe its performance. Normally, we would stop it much
earlier and still have a good solution. We present an example
time profile on the Stairs-16 task in Fig. 10. We see that the
number of regrasps is reduced drastically at the very begin-
ning of the one hour. For this task, running Algorithm 1 for
only 90 s would reduce the number of required regrasps by
half, from 48 to 24.

The Grid tasks are difficult to solve not only because the
number of operations are large, but also because each opera-
tion is performed by five robots. In these kind of tasks where
planning an independent assembly operation is highly con-
strained by itself, the time to find the initial plan can dominate
the planning time. We present an example time profile of our

Fig. 9 A plan for a five-robot team performing the Grid-2 × 2 task

123



Autonomous Robots (2019) 43:649–664 661

Table 2 Results showing how
our algorithm scales with
assembly tasks of increasing
sizes

Task Naive CSP Our planner initial plan (s) Our planner # transfers

Stairs-9 11.2 s 7.6 27/27 at 24.3 s

Stairs-16 No sol. 81.5 32.9/48 at 1h

Stairs-25 No sol. 230.4 33.4/75 at 1h

Grid-2 × 2 24.9 10.9 20/20 at 22.0 s

Grid-3 × 3 No sol. 235.3 40.5/45 at 1h

Grid-4 × 4 No sol. 1224.6 39/80 at 1 h

The first column shows the planning time of the Naive CSP Planner, where ‘No sol.’ indicates no solution
after one hour of planning. The second column shows the average time it took our planner to produce the
initial plan. The third column shows the average number of transfer constraints solved out of the total number
of transfer constraints at a certain point in time. For example, for the top row, 27 of the 27 transfer constraints
were solved after 24.3 s of planning

Fig. 10 Time profile of our planner on the Stairs-16 task. This plot is
drawn by averaging the three (out of ten) runs for which our planner
found a solution with eleven regrasps

Fig. 11 Time profile of our planner on the Grid-4 × 4 task. This plot
is drawn by averaging the eight (out of ten) runs for which our planner
found a solution with thirty-eight regrasps

planner in Fig. 11. We can see that it takes significant time to
find the initial solution, shown in red in the plot. Once the ini-
tial solution is found, almost half of the regrasps are removed
in a short amount of time, at which point Algorithm 1 can be
stopped and Algorithm 2 can be used to plan regrasps.

6.3 Physical testbed with robots

We are building a real robot team to perform autonomous
assembly of complex structures. The algorithm presented in
this paper provides our system with the sequences of config-
urations in which to grasp and assemble parts, enabling fast
planning and minimal regrasping operations. In Fig. 12 we
present snapshots from the execution of an assembly plan
generated by our algorithm. The complete execution can be
seen in the video accompanying this paper.

Our system consists of three KUKA Youbot robots, each
with an omni-directional base, a 5 degree-of-freedom arm,
and a parallel plate gripper. Perception in our system is pro-
vided by amotion capture system4 which is able to detect and
track infra-red reflective markers. We localize the robots and
the initial location of assembly parts using such markers. We
use an RRT planner (Kuffner and LaValle 2000) to move the
robots between configurations generated by our algorithm.

We present the initial grasps of three parts in Fig. 12a, b,
and Fig. 12c. The robots bring these three parts together in
Fig. 12d, using a planned assembly configuration. The robots
keep the same grasp on the parts through these operations,
enabling them to transfer parts between Fig. 12a–d, b–d,and
c–d. In Fig. 12e the remaining part is grasped, and in Fig. 12f
the complete assembly of the chair is achieved. Again, the
robots keep the same grasp between Fig. 12d–f and Fig. 12e–
f. The entire task requires 8min to complete. This includes
execution time as well as planning time for the assembly
operations and the motion plans.

While our robots can successfully use the planner out-
put to bring parts to assembly configurations, they need to
perform highly precise manipulation operations to actually
insert fasteners. Part of our research effort focuses on devel-
oping controllers and tools (Dogar et al. 2015) to perform
these operations. In this example we use magnets between
parts to hold the assembly together.

4 http://www.vicon.com.

123

http://www.vicon.com


662 Autonomous Robots (2019) 43:649–664

Fig. 12 Multi-robot execution of a chair assembly plan. a Grasping right side. b Grasping chair back. c Grasping chair seat. d Assembly of right
side, back, and seat. e Grasping left side. f Assembly of complete chair

7 Discussion

We approach motion planning as post-processing: We first
plan the robot configurations and then use a motion planner
to connect these configurations to each other. We made this
decision since in our domain, where the robots have ample
free space, connecting two non-colliding configurations is
almost always possible. There were, however, exceptions to
this. The last scene in Fig. 9 shows a possible failure mode.
While the robot configurations are valid, one of the robots is
trapped inside the grid structure.

It is not difficult to integrate motion planning into our
planner. In our current formulation, a transfer constraint, as
defined in Sect. 3.2, checks if two robot configurations grasp
a part at the same point. We can extend this check to include
connectivity, by running a motion planner between these
two configurations. This approach is taken, for example, by
Lozano-Pérez and Kaelbling (Lozano-Pérez and Kaelbling
2014) in a cluttered kitchendomain.With this approach, how-
ever, each transfer constraint check requires running amotion
planner which increase the planning time drastically. In our
experience, in domains with ample free space, it is much
faster to run the planner without motion planning checks
and, in the rare case that the planned configurations cannot
be connected, to re-run the planner again by removing the
invalid configurations from the CSP variable domains.

One important aspect of robotic manipulation that we
did not address in this work is uncertainty. During our real
robot experiments, uncertainty manifested itself as inaccu-
rate robot grasps, which led to collisions between assembly
parts and misalignments. It may be possible to extend our

current approach to address some of this uncertainty. This
would require planning conservative grasps that would avoid
collision even under uncertainty. This will place additional
constraints onto the problem and will probably increase the
planning times significantly.

Our approach to regrasping focused on hand-offs between
robots. This is only one strategy among many that robots can
use for regrasping. The robots can also place the object on
the ground and then grasp it in newways. This would require
planning for stable placement on the ground, which is by
itself an interesting problem especially for irregularly shaped
partially-assembled structures.

Finally, in this paper we provide the order of assembly
operations as input to our algorithm. The order, in fact, can
be computed along with the robot configurations to trade off
between minimizing the number of assembly operations and
the difficulty of getting too many robots take part in a single
operation. This would require combining assembly planning
algorithms (Wilson and Latombe 1994) with manipulation
planning algorithms such as ours.

Acknowledgements Support for this work has been provided in part by
The Boeing Company. Stuart Baker was supported by the MIT Lincoln
Labs.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Autonomous Robots (2019) 43:649–664 663

References

Bayazit, O. B., Xie, D., & Amato, N. M. (2005). Iterative relaxation of
constraints: A framework for improving automated motion plan-
ning. In 2005 IEEE/RSJ international conference on intelligent
robots and systems, (IROS 2005) (pp. 3433–3440). IEEE.

Berenson, D., & Srinivasa, S. S. (2008). Grasp synthesis in cluttered
environments for dexterous hands. In IEEE-RAS international con-
ference on humanoid robots.

Berenson, D., Srinivasa, S. S., & Kuffner, J. (2011). Task space regions:
A framework for pose-constrained manipulation planning. Inter-
national Journal of Robotics Research, 30(12), 1435–1460.

Bhatia, A., Kavraki, L. E., & Vardi, M. Y. (2010). Sampling-based
motion planning with temporal goals. In 2010 IEEE international
conference on robotics and automation (ICRA) (pp. 2689–2696).
IEEE.

Bretl, T. (2006). Motion planning of multi-limbed robots subject to
equilibrium constraints: The free-climbing robot problem. The
International Journal of Robotics Research, 25(4), 317–342.

Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intri-
cate motion, manipulation and task planning. The International
Journal of Robotics Research, 28(1), 104–126.

Cortes, J., Jaillet, L., & Siméon, T. (2008). Disassembly path planning
for complex articulated objects. IEEE Transactions on Robotics,
24(2), 475–481.

Dafle, N., Rodriguez, A., Paolini, R., Tang , B., Srinivasa, S., Erdmann,
M., Mason, M., Lundberg, I., Staab, H., & Fuhlbrigge, T. (2014).
Extrinsic dexterity: In-hand manipulation with external forces. In
IEEE international conference on robotics and automation.

Dang, H., & Allen, P. K. (2012). Semantic grasping: Planning robotic
grasps functionally suitable for an object manipulation task. In
IEEE/RSJ international conference on intelligent robots and sys-
tems.

Dechter, R. (2003). Constraint processing. Burlington: Morgan Kauf-
mann.

Dellin, C. M., & Srinivasa, S. S. (2015). A general technique for fast
comprehensive multi-root planning on graphs by coloring vertices
and deferring edges. In 2015 IEEE international conference on
robotics and automation (ICRA).

Diankov, R. (2010). Automated construction of robotic manipulation
programs. PhD Thesis, CMU, Robotics Institute.

Dobson, A., & Bekris, K. E. (2015). Planning representations and
algorithms for prehensile multi-arm manipulation. In IEEE/RSJ
international conference on intelligent robots and systems.

Dogar, M., Knepper, R. A., Spielberg, A., Choi, C., Christensen, H. I.,
& Rus, D. (2015a). Multi-scale assembly with robot teams. The
International Journal of Robotics Research, 34(13), 1645–1659.

Dogar, M., Spielberg, A., Baker, S., & Rus, D. (2015b). Multi-robot
grasp planning for sequential assembly operations. In IEEE inter-
national conference on robotics and automation

Ferbach, P., & Barraquand, J. (1997). A method of progressive con-
straints formanipulation planning. IEEE Transactions on Robotics
and Automation, 13(4), 473–485.

Gharbi, M., Cortés, J., & Siméon T. (2009). Roadmap composition
for multi-arm systems path planning. In IEEE/RSJ international
conference on intelligent robots and systems, 2009. IROS 2009.
(pp. 2471–2476). IEEE.

Halperin, D., Latombe, J. C., & Wilson, R. H. (2000). A general
framework for assembly planning: The motion space approach.
Algorithmica, 26(3–4), 577–601.

Harada, K., Tsuji, T., & Laumond, J. P. (2014). A manipulation motion
planner for dual-arm industrial manipulators. In IEEE interna-
tional conference on robotics and automation.

Hauser, K., Bretl, T., & Latombe, J. C. (2005). Learning-assisted multi-
step planning. In Proceedings of the 2005 IEEE international

conference on robotics and automation, 2005. ICRA 2005 (pp.
4575–4580). IEEE.

Kaelbling, L. P., & Lozano-Pérez, T. (2011). Hierarchical task and
motion planning in the now. In 2011 IEEE international confer-
ence on robotics and automation (ICRA) (pp. 1470–1477). IEEE.

Kaelbling, L. P., & Lozano-Pérez, T. (2013). Integrated task and motion
planning in belief space. The International Journal of Robotics
Research, 32(9–10), 1194–1227.

Knepper, R. A., Layton, T., Romanishin, J.,& Rus, D. (2013). Ikeabot:
An autonomous multi-robot coordinated furniture assembly sys-
tem. In IEEE international conference on robotics and automation.

Koga, Y., & Latombe, J. C. (1994). On multi-arm manipulation plan-
ning. In 1994 IEEE international conference proceedings of on
robotics and automation, 1994 (pp. 945–952). IEEE.

Kuffner, J. J., & LaValle, S. M. (2000). Rrt-Connect: An efficient
approach to single-query path planning. In IEEE International
Conference on Robotics and Automation.

Lozano-Pérez, T., & Kaelbling, L. P. (2014) . A constraint-based
method for solving sequential manipulation planning problems.
In IEEE/RSJ international conference on intelligent robots and
systems.

Lozano-Perez, T., Mason, M. T., & Taylor, R. H. (1984). Automatic
synthesis of fine-motion strategies for robots. The International
Journal of Robotics Research, 3(1), 3–24.

Lozano-Pérez , T., Jones, J., Mazer, E., O’Donnell, P., Grimson, W.,
Tournassoud, P., & Lanusse, A. (1987). Handey: A robot system
that recognizes, plans, andmanipulates. In IEEE international con-
ference on robotics and automation.

Minton, S., Johnston,M.D., Philips, A. B.,&Laird, P. (1992).Minimiz-
ing conflicts: A heuristic repair method for constraint satisfaction
and scheduling problems. Artificial Intelligence, 58(1), 161–205.

Russell, S. J., & Norvig P. (2003). Artificial Intelligence: A Modern
Approach, 2nd edn. Pearson Education.

Siméon, T., Laumond, J. P., Cortés, J., & Sahbani, A. (2004). Manipula-
tion planning with probabilistic roadmaps. International Journal
of Robotics Research, 23(7–8), 729–746.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P.
(2014). Combined task and motion planning through an extensible
planner-independent interface layer. In 2014 IEEE international
conference on robotics and automation (ICRA) (pp. 639–646).
IEEE.

Tournassoud, P., Lozano-Pérez, T., Mazer, E. (1987). Regrasping. In
IEEE international conference on robotics and automation

Vahrenkamp, N., Kuhn, E., Asfour, T., &Dillmann, R. (2010). Planning
multi-robot grasping motions. In IEEE-RAS international confer-
ence on humanoid robots.

Wan, W., & Harada, K. (2016). Developing and comparing single-arm
anddual-arm regrasp. IEEERobotics andAutomationLetters,1(1),
243–250.

Wan, W., Mason, M. T., Fukui, R., Kuniyoshi, Y. (2015). Improving
regrasp algorithms to analyze the utility ofwork surfaces in awork-
cell. In IEEE international conference on robotics and automation.

Wilson, R. H. (1992). On geometric assembly planning. PhD Thesis,
Stanford university: Stanford .

Wilson, R. H., & Latombe, J. C. (1994). Geometric reasoning about
mechanical assembly. Artificial Intelligence, 71(2), 371–396.

123



664 Autonomous Robots (2019) 43:649–664

Mehmet Dogar is a tenure-track
University Academic Fellow at the
School of Computing, University
of Leeds. His research focuses on
planning and control for robotic
manipulation. Previously he was a
Postdoctoral Associate at CSAIL,
MIT working on multi-robot plan-
ning. He received his Ph.D. from
the Robotics Institute, CMU in
2013.

Andrew Spielberg is a Ph.D. stu-
dent at MIT and a member of
the Distributed Robtoics Lab at
CSAIL, MIT.

Stuart Baker is a Graduate Stu-
dent at MIT.

Daniela Rus is the Andrew (1956)
and Erna Viterbi Professor of Elec-
trical Engineering and Computer
Science and Director of the Com-
puter Science and Artificial Intel-
ligence Laboratory (CSAIL) at
MIT. She serves as the Director of
the Toyota-CSAIL Joint Research
Center and is a member of the sci-
ence advisory board of the Toyota
Research Institute. Rus’ research
interests are in robotics, mobile
computing, and data science. Rus
is a Class of 2002 MacArthur Fel-
low, a fellow of ACM, AAAI and

IEEE, and a member of the National Academy of Engineering and
the American Academy of Arts and Sciences. She is the recipient of
the 2017 Engelberger Robotics Award from the Robotics Industries
Association. She earned her Ph.D. in Computer Science from Cornell
University.

123


	Multi-robot grasp planning for sequential assembly operations
	Abstract
	1 Introduction
	1.1 Related work

	2 Problem
	2.1 Moving assemblies between operations

	3 CSP formulation
	3.1 CSP for a single assembly operation
	3.2 CSP for a sequence of assembly operations
	3.3 Solving a CSP

	4 Algorithm
	4.1 Generating the plan with no direct transfers
	4.2 Imposing transfer constraints
	4.3 Analysis
	4.3.1 Completeness
	4.3.2 Optimality
	4.3.3 Complexity


	5 Collaborative regrasping
	6 Experiments and results
	6.1 Comparison to the naive approach
	6.2 Scaling up to long assembly sequences
	6.3 Physical testbed with robots

	7 Discussion
	Acknowledgements
	References




