635 research outputs found
Upper extremity assessment and rehabilitation system for stroke patients
Stroke is the leading cause of disabilities worldwide. Upper extremity impairments are very common after stroke. To support the recovery process, conventional assessment methods such as Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) are widely used to assess motor performance of stroke patients. However, the assessments face some limitations such as being subjective and time-consuming. Many research have been done to solve the limitations of conventional assessments by using motion capture sensor or robotics for objective assessment. The main objective of this research is to design and develop a vision-based automated rehabilitation and assessment system to assess upper extremity of stroke patients. A Kinect-based system was used as an upper extremity stroke rehabilitation assessment system with isolated training movement namely Shoulder Abduction-Adduction (SAA). Three experiments were conducted involving a total of eight healthy subjects and three stroke patients. A total of six out of nine collected features have been proved being significantly different using t-test method. The suitable features were selected using three different features selection methods, namely Relief-F, Principal Analysis Component, and Correlation-based Feature Selection. These three feature sets were then trained with four different classifiers: Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Tree and Random Forests in order to achieve the best predictive model. With a total of three feature sets and four classifiers, a total of 12 predictive models were constructed in this thesis. The 12 models were evaluated based on correlation-analysis. The result shows that the combination of ReliefF and SVM achieved accuracy of 91.04%, highest correlation coefficient of 0.9929 and lowest root mean square error of 0.1183 among all the constructed models
Investigation of sensor-based quantitative model for badminton skill analysis and assessment
Badminton is one of the most popular sports in Malaysia. The main aim of this project is to investigate sets of movements in badminton training using sensors, to identify the good movement that enhance badminton performance. In addition, this project also aims to identify measurable parameters to quantify badminton skill levels. The performance of elite players will be studied to identify benchmark values for these measurable parameters. A quantitative model will be proposed using these measurable parameters to help in the objective assessment of skill levels. Findings of this project will help badminton players to improve their techniques, as well as providing an objective measurement to assess badminton skills
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurement of higher cumulants of net-charge multiplicity distributions in AuAu collisions at GeV
We report the measurement of cumulants () of the net-charge
distributions measured within pseudorapidity () in AuAu
collisions at GeV with the PHENIX experiment at the
Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. ,
) of the net-charge distributions, which can be related to volume
independent susceptibility ratios, are studied as a function of centrality and
energy. These quantities are important to understand the quantum-chromodynamics
phase diagram and possible existence of a critical end point. The measured
values are very well described by expectation from negative binomial
distributions. We do not observe any nonmonotonic behavior in the ratios of the
cumulants as a function of collision energy. The measured values of and can be directly compared to lattice
quantum-chromodynamics calculations and thus allow extraction of both the
chemical freeze-out temperature and the baryon chemical potential at each
center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. C as a Rapid Communication. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Single electron yields from semileptonic charm and bottom hadron decays in AuAu collisions at GeV
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured
open heavy-flavor production in minimum bias AuAu collisions at
GeV via the yields of electrons from semileptonic decays
of charm and bottom hadrons. Previous heavy-flavor electron measurements
indicated substantial modification in the momentum distribution of the parent
heavy quarks due to the quark-gluon plasma created in these collisions. For the
first time, using the PHENIX silicon vertex detector to measure precision
displaced tracking, the relative contributions from charm and bottom hadrons to
these electrons as a function of transverse momentum are measured in AuAu
collisions. We compare the fraction of electrons from bottom hadrons to
previously published results extracted from electron-hadron correlations in
collisions at GeV and find the fractions to be
similar within the large uncertainties on both measurements for
GeV/. We use the bottom electron fractions in AuAu and along
with the previously measured heavy flavor electron to calculate the
for electrons from charm and bottom hadron decays separately. We find
that electrons from bottom hadron decays are less suppressed than those from
charm for the region GeV/.Comment: 432 authors, 33 pages, 23 figures, 2 tables, 2011 data. v2 is version
accepted for publication by Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- …