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ABSTRACT 

 
 

 Stroke is the leading cause of disabilities worldwide. Upper extremity 

impairments are very common after stroke. To support the recovery process, conventional 

assessment methods such as Fugl-Meyer Assessment (FMA) and Motor Assessment Scale 

(MAS) are widely used to assess motor performance of stroke patients. However, the 

assessments face some limitations such as being subjective and time-consuming. Many 

research have been done to solve the limitations of conventional assessments by using 

motion capture sensor or robotics for objective assessment. The main objective of this 

research is to design and develop a vision-based automated rehabilitation and assessment 

system to assess upper extremity of stroke patients. A Kinect-based system was used as 

an upper extremity stroke rehabilitation assessment system with isolated training 

movement namely Shoulder Abduction-Adduction (SAA). Three experiments were 

conducted involving a total of eight healthy subjects and three stroke patients. A total of 

six out of nine collected features have been proved being significantly different using t-

test method. The suitable features were selected using three different features selection 

methods, namely Relief-F, Principal Analysis Component, and Correlation-based Feature 

Selection.  These three feature sets were then trained with four different classifiers: 

Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Tree and 

Random Forests in order to achieve the best predictive model. With a total of three feature 

sets and four classifiers, a total of 12 predictive models were constructed in this thesis. 

The 12 models were evaluated based on correlation-analysis. The result shows that the 

combination of ReliefF and SVM achieved accuracy of 91.04%, highest correlation 

coefficient of 0.9929 and lowest root mean square error of 0.1183 among all the 

constructed models. 
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ABSTRAK 

 
 

Strok ialah penyebab utama kecacatan di seluruh dunia. Kemerosotan ekstrimiti 

atas sangat biasa selepas strok. Untuk mencepatkan proses pemulihan, kaedah penilaian 

konvensional seperti Penilaian Fugl-Meyer dan Skala Penilaian Motor digunakan secara 

meluas untuk menilai prestasi motor pesakit strok. Bagaimanapun, kaedah penilaian ini 

masih menghadapi beberapa batasan iaitu bersifat subjektif dan memakan masa. Banyak 

penyelidikan telah dilakukan untuk menyelesaikan batasan tersebut dengan menggunakan 

sensor tangkapan gerakan atau sistem robotik untuk penilaian objektif. Objektif utama 

penyelidikan ini adalah untuk mereka bentuk dan membangunkan sistem pemulihan dan 

penilaian automatik berasaskan sistem penglihatan untuk menilai ekstrimiti atas pesakit 

strok. Sistem berasaskan Kinect digunakan sebagai sistem pentaksiran pemulihan strok 

dengan gerakan terpencil iaitu Shoulder Abduction-Adduction (SAA). Terdapat tiga 

eksperimen telah dijalankan dan melibatkan lapan subjek yang sihat dan tiga pesakit strok. 

Sebanyak enam daripada sembilan ciri yang dikumpulkan telah terbukti mempunyai 

perbezaan ketara dengan menggunakan kaedah ujian-t. Ciri-ciri yang sesuai dipilih dengan 

tiga kaedah pemilihan ciri yang berbeza iaitu ReliefF, Principal Component Analysis, dan 

Correlation Feature Selection. Set tiga ciri ini kemudian dilatih dengan empat pengelas 

berbeza: Rangkaian Neural Buatan, Support Vector Machine (SVM), Random Tree dan 

Random Forests untuk mencapai model ramalan yang terbaik. Dengan sejumlah tiga set 

ciri dan empat pengelas, sebanyak 12 model ramalan telah dibina dan dinilai berdasarkan 

analisis korelasi. Keputusan menunjukkan bahawa kombinasi ReliefF dan SVM mencapai 

ketepatan sebanyak 91.04%, pekali korelasi tertinggi sebanyak 0.9929 dan ralat min punca 

kuasa dua terendah iaitu sebanyak 0.1183 di kalangan semua model yang dibina. 
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CHAPTER 1   

INTRODUCTION  

1.1  Problem Backgrounds  

Stroke is defined as a neurological deficit of cerebrovascular commonly caused 

by central nervous system (CNS) infarction. CNS infarction occurs when a blockage 

of blood flow in the arteries to the brain [1]. Insufficient blood flow to the brain will 

lead to oxygen deprivation and then to cell death. There are two main types of stroke, 

namely ischemic stroke (caused by blocked artery) and hemorrhagic stroke (bursting 

of a blood vessel) [2]. According to the health report, about 80% strokes are ischemic 

while 20% strokes are hemorrhagic [3]. Figure 1.1 shows the illustration of the 

ischemic and hemorrhagic stroke.   

  

Figure 1. 1 Illustration of the ischemic and hemorrhagic stroke [4]   
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Stroke is a non-negligible global health problem. In Malaysia, stroke was 

ranked as the third leading cause of mortality for males and second for females in 2009 

[5]. The mean age of stroke onset in Malaysia was between 54.5 and 62.6 years old. 

Figure 1.2 shows the annual mortality rate of ischemic stroke by sex over a lifetime in 

Malaysia. According to the Global disease burden study, Malaysia women 

encountered the highest mortality rate from ischemic stroke at age above 80 years old 

[6]. The peak of mortality rate for Malaysia women was higher than the Malaysia men.  

   

Figure 1. 2 The annual mortality rate of ischemic stroke by sex over a lifetime in 

Malaysia [6] 

Those who survived after a stroke are commonly suffered with severe motor 

impairment. Upper extremity disability is one of the most significant motor deficits 

after a stroke [7] [8]. Loss of upper extremity motor function after stroke results in 

decreasing the level of independence with the activities of daily living (ADL) such as 

eating, bathing, dressing, toileting etc. From the research study, stroke patients today 

were discharged from hospital to home more quickly than in the past due to shifting 

economic realities [9]. Stroke rehabilitation is increasingly being shifted to an 

outpatient setting such as rehabilitation center or at home. Stroke patients have to 

continue to regain the motor function skills by taking expensive outpatient therapy [10]. 

Therefore, comprehensive stroke rehabilitative service has been shown to be cost-

effective and effective intervention for patients.  
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1.2 Conventional Rehabilitation Program  

In current clinical evaluation of upper extremity (UE) impairment after stroke, 

the functional performance of UE is accessed by using standardized clinical outcome 

measures [10], such as Motor Assessment Scale (MAS) and Fugl-Meyer Upper 

Extremity Scale (FM-UE). MAS [11] is one of the most common performance-based 

scale that accessed in local rehabilitation centers. For example, Hospital Sultan 

Aminah (HSA) [12], National Stroke Association of Malaysia (NASAM), and 

Persatuan Kebajikan Amal Lexin. MAS is defined and recommended to access 

everyday motor function in stroke patients. However, most of the clinicians cannot 

access the patients daily due to the large population of patients that limited the amount 

of time intervention between the clinicians and the patients [13]. Other than that, 

current clinical assessment method is lacking of objective assessment [14]. Objective 

assessment is independent of the observation of clinician. The assessment is done by 

measuring metric using devices or sensors. In contrast, subjective assessment is highly 

dependent on the observation of the clinician based on their experience. For example, 

the performance rating of the Motor Assessment Scale (MAS) is dependent on the 

observer as detailed in Appendix C. 

1.2.1 Motor Assessment Scale (MAS)  

The Motor Assessment Scale (MAS) is a task-oriented approach that was 

developed to access the stroke patient’s ability of movement every day. MAS consists 

of eight criteria (items) for scoring. There are supine to side lying onto intact side, 

supine to sitting over side of bed, sitting to standing, balance sitting, walking, upper 

arm function, hand movements and advanced hand activities. Each item is recorded on 

a scale of 0 to 6. The total range of score for MAS is from 0 to 48 while range of score 

for upper extremity MAS (UL-MAS) is from 0 to 18.  The higher the score represents 

the better the motor function performance. The scale has been shown to have an inter 

and intra reliability of r=0.95 and r=0.98 respectively [12].  From the studies, it 

reported the administration times ranging is from 15 to 60 minutes.  
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1.3 Current Technology Solutions and Limitations    

Motion capture is an important element of developing an autonomous robot to 

resolve the limitations of conventional therapy [15].  It refers to the process of 

recording the movement of the patients. Many researches have been done to develop 

a robotic system coupled with motion sensors to measure the patient’s abilities 

objectively [16]. Robot-assisted therapy able to provide high intensity, repetitive, 

consistent treatment and task-specific for efficient recovery of the motor function. 

Motion capture system can be defined by either optical tracking system, inertial 

wearable sensors or video-based system (marker-less sensors). Optical tracking system 

is capable of providing high precision data and retrieving body information data such 

as velocity, distance and joints angle. It required a huge space to setup the complete 

equipment with markers or sensors attached to the patient. Inertial wearable sensors 

consisting of accelerometers, gyroscopes and magnetic sensors placed on specific body 

segments such as wrist, arm or trunk to track the kinematic movement.   Accumulative 

error arises while estimating the position by integrating accelerations or angular 

velocity [15]. Video-based system used to track the body movement without requiring 

any markers to attach to the body segments. It is popular with massive potential in 

research area due to its low costs and easy to use which suitable for physiotherapist 

and families to monitor the patient’s performance either in clinical center or home.  

Virtual reality game incorporated with motion capture system has emerged as a 

new approach in stroke rehabilitation and assessment [17]. It provides the advantage 

of practicing exercises with visual and audio feedback which may encourage a higher 

number of repetitions of the exercise than conventional therapy.   

1.4 Problem Statement    

The major issues faced by current rehabilitation program are the limited 

availability of physiotherapists for therapy [18], repetitiveness of the therapy [19], 
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subjective assessment [14] and limited amount of time intervention between clinicians 

and patients due to high medical cost [13]. Normally 1 physiotherapist has to assist up 

to 10 stroke patients during each training session. This phenomena will result in 

decreasing the effectiveness of physical therapy. Many robotic rehabilitation system 

have been developed to reduce the burden of the physiotherapists during rehabilitation 

program. The use of vision based system is found to be effective for rehabilitation 

therapy after a stroke, but assessment using these types of devices is still at research 

level. Also, therapists are still required to spend much time in setting up the system 

and monitoring the patients. 

Current motor rehabilitation after stroke emphasizes and highlights the 

importance of repetitive functional training and task specific training [20][21]. 

Repeated practice of specific task (e.g., lifting cup, combing hair, answering telephone 

etc.) is a goal-directed treatment approach used to improve the stroke recovery rate 

[22]. Combining of task-oriented and repetitive training show to be greater 

improvement and effective than non-specific repetitive training alone [23][24]. 

Research studies have shown that the robotic rehabilitation of upper extremity function 

can provide high intensity repetitive movement therapy and increase the performance 

of upper extremity than conventional therapy [25].  However, repeating the same 

exercises may lead to stroke patients’ lack of motivation on the therapy process [26]. 

Lack of motivation may resulting in delayed physical recovery [27]. As a solution, 

virtual reality game incorporated with vision based system has shown the potential to 

enhance the motivation of the patients on the therapy process. However, commercial 

virtual reality game is not so suitable for most of the patients due to the high difficulty 

level. Therefore, development of a rehabilitation game is highly recommended to 

provide adaptable difficulty level for stroke patients and maintain their enjoyment in 

virtual reality training. 

In order to overcome the subjective assessment, many researches have been 

done in developing an automated assessment system by using machine learning 

algorithm. However, most of the studies is only focus on assessment, it would be good 

if can integrate the assessment with the virtual reality training system. Therefore, a 

better solution for assessment model using low cost vision-based system is highly 

needed.  
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1.5  Research Objectives  

This research aims to investigate the feasibility of predictive modelling in 

assessing Quality of Movement (QoM) of stroke survivors via the following objectives:  

1. To design and develop an objective vision-based upper extremity 

assessment system which able to integrate with the virtual reality 

training system.  

2. To investigate the suitable kinematic variables that can be used for 

classification of stroke performance.  

3. To evaluate suitable classifier and combination of input features for 

classifying stroke performance of chronic stage stroke patients.  

1.6 Research Scopes  

The aim of this study is to design and implement the virtual reality training 

system for use in automated upper extremity assessment after stroke.  

  

The upper extremity assessment predictive model is developed to identify the 

kinematic variables to evaluate motion quality of patients. The system is successfully 

tested by healthy subjects and stroke patients. The inclusion criteria for the stroke 

patients allowed chronic patients only due to the limited number of stroke patients 

available. The conventional assessment scale that is being studied in this work is the 

Motor Assessment Scale (MAS) because only this scale is being used in NASAM and 

Persatuan Kebajikan Lexin. 
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Kinematic variables with significance difference between the healthy subjects 

and stroke patients are applied as features in upper extremity assessment model. The 

features are pre-processed using three different feature selection methods, which are 

Relief-F, CFS, and PCA. Then, predictive models are constructed based on four 

different modelling methods (classifiers), namely ANN, SVM, Random Tree and 

Random Forests. The designed predictive model will be evaluated and selected based 

on its model correlation coefficient and model accuracy. 

The virtual reality rehabilitation system was designed and developed using 

Microsoft Visual Studio with support of XNA Game Studio. The subjects’ data were 

collected using Kinect-based sensor. Data analysis was carried out using MATLAB 

and Waikato Environment for Knowledge Analysis (WEKA) software.   

1.7  Thesis Outline  

This thesis consists of five chapters to detail the work done throughout the 

research. Chapter 1 contains general information regarding the motivation based on 

background of studies, problem statements, research objectives and research scopes.   

Chapter 2 presents the literature review of vision-based technology that used 

for upper extremity training and assessment after stroke. This chapter explained in 

details about the previous study on stroke, stroke assessment methods, and assessment 

models.  

Chapter 3 presents the research methodology of the research study. This 

chapter details the study design and interviewing, hardware implementation, software 

implementation and how the pilot study protocol conducted. In the subsequence 

chapter, it presents the methods of pilot study I, pilot study II and development of 

predictive model for upper extremity after stroke. In pilot study I, it aims to evaluate 

the usability of task-specific interactive game-based virtual reality UE-ARM for stroke 

patients. The pilot study was conducted with two chronic patients to investigate 
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appropriate upper extremities training schedule and evaluate the usability of the 

developed task-specific interactive game-based virtual reality UE-ARM. In pilot study 

II, it aims to evaluate the motion quality of shoulder abduction-adduction after stroke 

using UE-ARM. The experiment was conducted with a total of eight healthy subjects 

and three stroke patients to analyze and identify suitable kinematic variables by finding 

the significant differences between healthy subjects and stroke patients using T-test 

method. In development of predictive model for upper extremity, it aims to present an 

automated predictive model that able to classify the motor impairment level that 

corresponding to the Motor Assessment Scale (MAS). A combined feature selection 

with the different classifiers were implemented to improve the accuracy of the model 

performance. 

Chapter 4 presents the results of the study on pilot study I and pilot study II, as 

well as the results from the predictive model for upper extremity assessment after 

stroke. The kinematic variables that showed significance difference were used as input 

and combination of the input attributes for classifying stroke performance.   

At last, Chapter 5 concludes the summary of the research, contributions of the 

study and suggestions for future work. References are included at the end of the thesis.   
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