198 research outputs found

    Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models

    Get PDF
    Predicting the behavior of turbulent flows using large-eddy simulation requires modeling of the subgrid-scale stress tensor. This tensor can be approximated using mixed models, which combine the dissipative nature of functional models with the capability of structural models to approximate out-of-equilibrium effects. We propose a mathematical basis to mix (functional) eddy-viscosity models with the (structural) Bardina model. By taking an anisotropic minimum-dissipation (AMD) model for the eddy viscosity, we obtain the (single-layer) AMD-Bardina model. In order to also obtain a physics-conforming model for wall-bounded flows, we further develop this mixed model into a two-layer approach: the near-wall region is parameterized with the AMD-Bardina model, whereas the outer region is computed with the Bardina model. The single-layer and two-layer AMD-Bardina models are tested in turbulent channel flows at various Reynolds numbers, and improved predictions are obtained when the mixed models are applied in comparison to the computations with the AMD and Bardina models alone. The results obtained with the two-layer AMD-Bardina model are particularly remarkable: both first- and second-order statistics are extremely well predicted and even the inflection of the mean velocity in the channel center is captured. Hence, a very promising model is obtained for large-eddy simulations of wall-bounded turbulent flows at moderate and high Reynolds numbers.Comment: 29 pages, 14 figures, 3 tables; revised, accepted manuscrip

    Exploring nonlinear subgrid-scale models and new characteristic length scales for large-eddy simulation

    Get PDF
    We study subgrid-scale modeling for large-eddy simulation of anisotropic turbulent flows on anisotropic grids. In particular, we show how the addition of a velocity-gradient-based nonlinear model term to an eddy viscosity model provides a better representation of energy transfer. This is shown to lead to improved predictions of rotating and nonrotating homogeneous isotropic turbulence. %We furthermore show that spanwise-rotating turbulent plane-channel flows form a challenging test case for large-eddy simulation. Our research further focuses on calculation of the subgrid characteristic length, a key element for any eddy viscosity model. In the current work, we propose a new formulation of this quantity based on a Taylor series expansion of the subgrid stress tensor in the computational space. Numerical tests of decaying homogeneous isotropic turbulence and a plane-channel flow illustrate the robustness of this flow-dependent characteristic length scale with respect to mesh anisotropy

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Fully covered self-expanding metal stents placed temporarily in the bile duct: safety profile and histologic classification in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fully covered Self-Expanding metal stents (FCSEMS) have been shown efficacious in palliating malignant biliary obstructions. There is little data analyzing mucosal response to their temporary placement in the bile duct.</p> <p>Methods</p> <p>Ten mini pigs underwent endoscopic placement of a FCSEMS (Wallflex, Boston Scientific). FCSEMS were kept in place for three months. At the end of the 3 months, FCSEMS were removed endoscopically. Five pigs were euthanized and their bile ducts harvested. The other five were kept alive for another month post removal. A single pathologist, created a scoring system (to determine degree of inflammation, fibrosis, and epithelial injury), examined all specimens in a blinded fashion.</p> <p>Results</p> <p>Four FCSEMS spontaneously migrated in the duodenum. On post mortem examination, mild mucosal thickness was noted in three bile duct specimens while superficial inflammation of the bile duct was noted in five animals. Histologic examination of the bile duct revealed focal acute inflammation in both groups. For the 5 animals euthanized immediately after stent removal, there was a tendency to have superficial mucosal erosion and fibrosis. In contrast, increased chronic inflammation was more commonly seen in the animals 1 month post stent removal, with all animals in this group showing moderate degrees of mononuclear inflammatory cell mucosal infiltrates. No severe inflammatory or fibrotic duct injury was observed in any of the study animals, with degree of injury graded as mild to moderate.</p> <p>Conclusion</p> <p>FCSEMS appear to induce minimal tissue overgrowth or fibrosis post placement. Ease of removability and no significant histologic injury are advantages noted with FCSEMS., however, further studies are needed to evaluate treating benign biliary strictures with FCSEMS in humans.</p

    Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: A LoDoCo2 biomarker substudy

    Get PDF
    Background and aims: Colchicine reduces the risk of cardiovascular events in patients with coronary disease. Colchicine has broad anti-inflammatory effects and part of the atheroprotective effects have been suggested to be the result of NLRP3 inflammasome inhibition. We studied the effect of colchicine on extracellular vesicle (EV) NLRP3 protein levels and inflammatory markers, high sensitivity-CRP (hs-CRP) and interleukin (IL)-6, in patients with chronic coronary disease. Methods: In vitro, the NLRP3 inflammasome was stimulated in PMA-differentiated- and undifferentiated THP-1 cells. In vivo, measurements were performed in serum obtained from 278 participants of the LoDoCo2 trial, one year after randomization to colchicine 0.5 mg once daily or placebo. EVs were isolated using precipitation. NLRP3 protein presence in EVs was confirmed using iodixanol density gradient centrifugation. Levels of NLRP3 protein, hs-CRP and IL-6 were measured using ELISA. Results: In vitro, NLRP3 inflammasome stimulation showed an increase of EV NLRP3 protein levels. EV NLRP3 protein levels were lower in patients treated with colchicine (median 1.38 ng/mL), compared to placebo (median 1.58 ng/mL) (p = 0.025). No difference was observed in serum NLRP3 protein levels. Serum hs-CRP levels were lower in patients treated with colchicine (median 0.80 mg/L) compared to placebo (median 1.34 mg/L) (p < 0.005). IL-6 levels were lower in patients treated with colchicine (median 2.07 ng/L) compared to placebo (median 2.59 ng/L), although this was not statistically significant (p = 0.076). Conclusions: Colchicine leads to a reduction of EV NLRP3 protein levels. This indicates that inhibitory effects on the NLRP3 inflammasome might contribute to the atheroprotective effects of colchicine in coronary disease

    Regulation of Classical Cadherin Membrane Expression and F-Actin Assembly by Alpha-Catenins, during Xenopus Embryogenesis

    Get PDF
    Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm

    Central coordination as an alternative for local coordination in a multicenter randomized controlled trial: the FAITH trial experience

    Get PDF
    Contains fulltext : 110505.pdf (publisher's version ) (Open Access)BACKGROUND: Surgeons in the Netherlands, Canada and the US participate in the FAITH trial (Fixation using Alternative Implants for the Treatment of Hip fractures). Dutch sites are managed and visited by a financed central trial coordinator, whereas most Canadian and US sites have local study coordinators and receive per patient payment. This study was aimed to assess how these different trial management strategies affected trial performance. METHODS: Details related to obtaining ethics approval, time to trial start-up, inclusion, and percentage completed follow-ups were collected for each trial site and compared. Pre-trial screening data were compared with actual inclusion rates. RESULTS: Median trial start-up ranged from 41 days (P25-P75 10-139) in the Netherlands to 232 days (P25-P75 98-423) in Canada (p = 0.027). The inclusion rate was highest in the Netherlands; median 1.03 patients (P25-P75 0.43-2.21) per site per month, representing 34.4% of the total eligible population. It was lowest in Canada; 0.14 inclusions (P25-P75 0.00-0.28), representing 3.9% of eligible patients (p < 0.001). The percentage completed follow-ups was 83% for Canadian and Dutch sites and 70% for US sites (p = 0.217). CONCLUSIONS: In this trial, a central financed trial coordinator to manage all trial related tasks in participating sites resulted in better trial progression and a similar follow-up. It is therefore a suitable alternative for appointing these tasks to local research assistants. The central coordinator approach can enable smaller regional hospitals to participate in multicenter randomized controlled trials. Circumstances such as available budget, sample size, and geographical area should however be taken into account when choosing a management strategy. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00761813

    Utilizing a Global Network of Telescopes to Update the Ephemeris for the Highly Eccentric Planet HD 80606 b and to Ensure the Efficient Scheduling of JWST

    Get PDF
    The transiting planet HD 80606 b undergoes a 1000 fold increase in insolation during its 111 days orbit due to it being highly eccentric (e = 0.93). The planet's effective temperature increases from 400 to over 1400 K in a few hours as it makes a rapid passage to within 0.03 au of its host star during periapsis. Spectroscopic observations during the eclipse (which is conveniently oriented a few hours before periapsis) of HD 80606 b with the James Webb Space Telescope (JWST) are poised to exploit this highly variable environment to study a wide variety of atmospheric properties, including composition, chemical and dynamical timescales, and large scale atmospheric motions. Critical to planning and interpreting these observations is an accurate knowledge of the planet's orbit. We report on observations of two full-transit events: 2020 February 7 as observed by the TESS spacecraft and 2021 December 7-8 as observed with a worldwide network of small telescopes. We also report new radial velocity observations which, when analyzed with a coupled model to the transits, greatly improves the planet's orbital ephemeris. Our new orbit solution reduces the uncertainty in the transit and eclipse timing of the JWST era from tens of minutes to a few minutes. When combined with the planned JWST observations, this new precision may be adequate to look for non-Keplerian effects in the orbit of HD 80606 b
    corecore