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ABSTRACT
Predicting the behavior of turbulent flows using large-eddy simulation requires a modeling of the subgrid-scale stress tensor. This tensor can
be approximated using mixed models, which combine the dissipative nature of functional models with the capability of structural models to
approximate out-of-equilibrium effects. We propose a mathematical basis to mix (functional) eddy-viscosity models with the (structural) Bar-
dina model. By taking an anisotropic minimum-dissipation (AMD) model for the eddy viscosity, we obtain the (single-layer) AMD–Bardina
model. In order to also obtain a physics-conforming model for wall-bounded flows, we further develop this mixed model into a two-layer
approach: the near-wall region is parameterized with the AMD–Bardina model, whereas the outer region is computed with the Bardina model.
The single-layer and two-layer AMD–Bardina models are tested in turbulent channel flows at various Reynolds numbers, and improved pre-
dictions are obtained when the mixed models are applied in comparison to the computations with the AMD and Bardina models alone. The
results obtained with the two-layer AMD–Bardina model are particularly remarkable: both first- and second-order statistics are extremely
well predicted and even the inflection of the mean velocity in the channel center is captured. Hence, a very promising model is obtained for
large-eddy simulations of wall-bounded turbulent flows at moderate and high Reynolds numbers.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0015293

I. INTRODUCTION

Accurately predicting the behavior of turbulent flows is still
one of the major challenges in the field of computational fluid
dynamics. The large spectrum of scales of motion present in tur-
bulent flows and the lack of computational power have hindered
the direct computation of all eddies. Therefore, finding a coarse-
grained description is one of the main challenges to turbulence
research. A promising methodology for that is large-eddy simulation
(LES).

LES reduces the complexity of the turbulence problem through
the utilization of a spatial filter (see, for instance, the monographs
of Sagaut1 and Pope2). The application of a filter to the convec-
tive nonlinearity in the Navier–Stokes equations, however, results

in an unclosed term: the subgrid-scale stress tensor. The subgrid-
scale stress tensor accounts for the effects of the small scales on the
large ones and cannot be directly computed. This tensor, therefore,
is to be modeled. A great variety of subgrid-scale models is already
available and can be divided into functional, structural, and mixed
models (refer to the work of Sagaut1 for an extensive overview of
these models in the context of incompressible flows).

Functional models aim at representing the kinetic energy cas-
cade through the introduction of a dissipative term. These physics-
based models describe the effect of the subgrid terms on the filtered
velocity. Therefore, functional models generally take into account
the net kinetic energy transfer from the resolved scales to the sub-
grid modes. However, the structure of the unresolved stress tensor,
i.e., its eigenvectors, is poorly predicted.1,3–7
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Structural models, on the other hand, aim at mathematically
reconstructing the subgrid-scale stress tensor from an evaluation of
the filtered velocity (e.g., through the scale-similarity hypothesis4,5,8)
or through formal series expansions of the unknown terms.9,10 The
structural models based on the scale-similarity hypothesis generally
predict the structure of the subgrid-scale stress tensor well and are
therefore able to predict out-of-equilibrium effects in a numerically
stable manner. These models often do not dissipate enough kinetic
energy.1,3–7

Both functional and structural modeling approaches have their
strengths and weaknesses, which can be seen as complementary.
The complementary nature of these modeling approaches was first
investigated by Bardina et al.4 They analyzed the average correlation
between the exact and the modeled subgrid-scale stresses for homo-
geneous isotropic turbulence and homogeneous turbulence in the
presence of mean shear. The subgrid-scale stress tensor was modeled
with eddy-viscosity models (such as the Smagorinsky model,11 the
vorticity model,12 and the turbulent kinetic energy model4) as well
as with their scale-similarity model, here referred to as the “Bardina
model.”

All eddy-viscosity models studied by Bardina et al.4 produced
essentially equivalent low average correlation coefficients between
modeled and exact subgrid-scale stresses. These results were con-
sistent with the low correlations obtained previously by Clark
et al.3 and McMillan and Ferziger.13 The Bardina model, on the
other hand, yielded high average correlation coefficients between
exact and modeled values of the subgrid-scale stresses. This scale-
similarity model, however, often does not provide enough dissipa-
tion, i.e., it is not able to provide the proper net energy removal from
the resolved scales. As eddy-viscosity models can provide the proper
amount of energy dissipation and the Bardina model provides a
good representation of the local subgrid-scale stress, the linear com-
bination of the Smagorinsky11 and Bardina models was studied by
Bardina et al.4 With this mixed Smagorinsky–Bardina model, Bar-
dina et al.4 obtained good predictions of the energy dissipation and
structure of the subgrid-scale stress tensor in simulations of homo-
geneous isotropic turbulence and homogeneous turbulence in the
presence of mean shear.

Since the pioneering mixed Smagorinksy–Bardina model,4 var-
ious mixed models have been proposed. Zang et al.14 applied the
dynamic procedure of Germano et al.15 to the Smagorinsky–Bardina
model4 and obtained a mixed model in which the model param-
eter of the eddy-viscosity part was determined dynamically. This
dynamic mixed model was tested for turbulent flows in a lid-driven
cavity, and although the computations were performed at relatively
low Reynolds numbers, the results were promising.

Salvetti and Banerjee16 improved the dynamic mixed model
of Zang et al.,14 dynamically computing the model parameters
of the eddy-viscosity and the scale-similar parts. Their so-called
dynamic two-parameter model was tested for the flow between a
no-slip wall and a free-slip surface, and the results were compared
to the predictions obtained with the application of the dynamic
Smagorinsky model of Germano et al.,15 the dynamic mixed model
of Zang et al.,14 and DNS data from Lam and Banerjee.17 The results
obtained with both mixed models exhibited great improvements
in comparison to the dynamic Smagorinsky model. Both mixed
models dissipate enough energy while accounting for backscatter
and provide good results on structural levels. The results obtained

with the dynamic two-parameter model are, however, of superior
quality.

Sarghini et al.18 tested several eddy-viscosity models and mixed
models in equilibrium and non-equilibrium flows, i.e., in a two-
dimensional plane channel and in a three-dimensional boundary
layer generated by moving the lower wall of a fully developed plane
channel in the spanwise direction. The results were compared to
direct numerical simulations and experimental data, and in gen-
eral, mixed models gave more accurate results than eddy-viscosity
models.

Several other mixed models and dynamic mixed models have
been proposed and tested (see, e.g., Refs. 10, 19, and 20–23). The
derivation of mixed models, however, often lacks a formal mathe-
matical basis, i.e., the two components are joined together to simply
obtain a better mix of properties. In this paper, we show that mixed
models can be derived in a mathematically consistent manner. We
thereby obtain a mix composed of an eddy-viscosity part and the
Bardina model. Here, the anisotropic minimum-dissipation model
(AMD) of Rozema et al.24 is applied to model the eddy-viscosity
because of its low dissipation characteristics, i.e., this model dissi-
pates only the minimal amount of turbulent kinetic energy required
to remove subgrid scales from the solution (see Ref. 25). In this way,
we ensure that the AMD model does not add an excessive amount of
dissipation to the numerical scheme.

For the case of wall-bounded turbulence, the AMD–Bardina
model is adapted to better represent the physics of near-wall turbu-
lence. Wall-bounded flows are characterized by physical processes
that vary with the distance to the wall, i.e., the farther away from
the wall, the higher the influence of the turbulent stresses and the
lower the influence of the viscous stresses (see, e.g., Ref. 26). Here,
we divide the wall-bounded flow domain into a near-wall region
and an outer region (as is commonly done by hybrid RANS-LES
approaches27). The AMD–Bardina model is utilized in the near-
wall domain since this model introduces enough dissipation while
accounting for the interaction between turbulent structures. In the
outer region, the subgrid-scale stress tensor is approximated by the
Bardina model only, as relatively little energy is dissipated in this
region. This new two-layered mixed model is here called the two-
layer AMD–Bardina model, whereas the model that does not con-
sider the division of domains is called the single-layer AMD–Bardina
model. Both the single-layer and two-layer AMD–Bardina mixed
models are tested in turbulent channel flows at various Reynolds
numbers, and the results are compared to DNS results and
discussed.

The outline of this paper is as follows: Section II provides a
description of the applied methodology to achieve a mathematical
basis to mix LES models. To start, the methodology is described for a
convection–diffusion equation. Then, the methodology is extended
to the incompressible Navier–Stokes equations. This process results
in spatially filtered incompressible Navier–Stokes equations, which
naturally include an eddy-viscosity model part, here represented by
the AMD model,24 and a scale-similarity model part, i.e., the Bardina
model.4 Next, the application of the AMD–Bardina model to wall-
bounded flows is considered for which a two-layer AMD–Bardina
model is developed. Thereafter, in Sec. III, an overview of the
numerical setup for the computation of turbulent channel flows
is given. The results obtained with the single-layer and two-layer
AMD–Bardina models are presented, discussed, and compared to
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reference data from the literature in Sec. IV. Finally, in Sec. V, the
current work is summarized, and further directions of study are
suggested.

II. MATHEMATICAL METHODOLOGY
Mixing LES models is a promising approach to achieve subgrid-

scale models that can capture the complex dynamics of turbulence.
We therefore propose a mathematical basis to obtain a combination
of a scale-similarity model and an eddy-viscosity model.

To demonstrate this approach, first, a two-dimensional
convection–diffusion equation is analyzed in Sec. II A. This equa-
tion is simpler than the Navier–Stokes equations while containing all
key ingredients of our approach. Second, in Sec. II B, the proposed
methodology is extended to the full three-dimensional incompress-
ible Navier–Stokes equations, and a mixed model is obtained. This
model consists of a combination of the scale-similarity model pro-
posed by Bardina et al.4 and an eddy-viscosity model. In Sec. II C,
we apply the anisotropic minimum-dissipation model (AMD) pro-
posed by Rozema et al.24 to model the dissipative effects in turbu-
lent flows and we obtain the (single-layer) AMD–Bardina model.
Finally, in Sec. II D, the AMD–Bardina model is extended to wall-
bounded flows in a physics-conforming manner and the two-layer
AMD–Bardina model is developed.

A. Convection–diffusion equation
The convection–diffusion equation

∂ f i

∂t
+ ∂ f i uj

∂xj
= D

∂2 fi
∂xj ∂xj

(1)

is used as a simplified problem to illustrate the developed mathe-
matical methodology for coarse-staggered grids. Here, the quantity
fi represents the density of any physical variable. The time variation
of the density is given by the balance of two terms: the nonlinear,
convective term on the left-hand side and the diffusive term on
the right-hand side. The diffusion coefficient is denoted by D, and
the velocity field is given by uj. Einstein’s summation convention is
implied for repeated indices.

Schumann’s28 filter is applied to Eq. (1). This filter is defined by

V
fi =

1
∣V ∣∫V

fi dV , (2)

where V denotes the volume of the filter box, i.e., the volume of a
grid cell. The volume-averaged convective and diffusive terms are
rewritten by applying Gauss’ divergence theorem. This procedure
leads to the appearance of surface-averaged terms, which are defined
by

S
fi =

1
∣S∣∫S

fi ni dS, (3)

where S denotes a surface (the surface of V) and ni is the
outward-pointing unit normal on S. Thus, the spatially filtered
convection–diffusion equation becomes

∣V ∣
∣S∣

∂
V

fi

∂t
+ S

fi uj =
S

D
∂ fi

∂xj
. (4)

This equation is, however, not closed due to the nonlinearity of the
convective term [the second term on the left-hand side of Eq. (4)].
Specifically, the spatially filtered convection–diffusion equation can-
not be expressed in terms of fi and uj. We therefore decompose this
term according to

S
fi uj =

V
fi

suj + τα
ij , (5)

where the residual between the nonlinear term
S
fi uj and the term

V
fi

suj , i.e., τα
ij , accounts for the effects of the subgrid modes on the

resolved scales of the solution.
Here, a volume average is the natural choice for the physical

variable fi since it is a density. The convective velocity uj, on the
other hand, is surface averaged since it is directly related to the fluxes
through the surfaces. It may be emphasized that the decomposition
of Eq. (5) differs from the usual approach in which only one filter
operation is used. We apply both a volume filter, to the density, and
a surface filter, to the flux.

In order to compute Eq. (5), we begin by considering the first
term on the right-hand side of this equation. Since this term contains
both a volume and a surface integral, shifted control volumes are
introduced to compute both at the same location of the staggered
grid. On a uniform mesh, the shifted volumes have the same size
and form as the original volumes from Eq. (2) but are shifted so that
they are centered around a surface. As an example, Fig. 1 illustrates
the volume V j+1/2, which is shifted in the j-direction.

Obviously, the fluxes through all cell surfaces must be deter-
mined. Here, we first consider the volume average of the convected
density, and then, we treat the surface average of the normal veloc-
ity. We focus only on the surface Sj+1/2 for the sake of brevity. This
surface is the intersection of the V j and V j+1 volumes, i.e., V j ∩ V j+1
(see Fig. 1).

In order to evaluate the factor
V

fi of the right-hand side
of Eq. (5) at the surface Sj+1/2, we consider the volume average
regarding the shifted volume V j+1/2 (see Fig. 1). This average is

FIG. 1. Shifted volume in relation to the j -direction. V j+1/2 is the shifted volume,
whereas V j and V j+1 are the original volumes. Sj+1/2 denotes the surface that
separates V j and V j+1.
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approximated according to

Vj+1/2 fi =
Vj∪Vj+1 fi + ri∣Sj+1/2

, (6)

where
Vj∪Vj+1 fi represents the volume average of fi over the volume

consisting of the union of the V j and V j+1 cells, i.e., V j ∪ V j+1, and ri
describes the residual at the considered surface.

We compute the first term on the right-hand side of Eq. (6) by
interpolating the known volume averages of the physical variable fi,

Vj∪Vj+1 fi =
1
2
(Vj fi +

Vj+1 fi). (7)

Equation (7) shows that the interpolation of
Vj fi and

Vj+1 fi can be

seen as a filter over the volume V j ∪ V j+1 (see Fig. 1). Hence,
Vj∪Vj+1 fi

is considered a doubly filtered variable. The first filter level is then
characterized by the same filter width as the Schumann filter, i.e.,
V j or V j+1. The second filter level is characterized by a double filter
width in the direction normal to the surface Sj+1/2, i.e., a volume filter
over V j ∪ V j+1.

The current mathematical methodology, thus, naturally intro-
duces a relation between a singly filtered variable, i.e.,

Vj+1/2 fi , and

a doubly filtered variable, i.e.,
Vj∪Vj+1 fi . The residual ri in Eq. (6) is

a direct result of applying filters with different filter widths. It is
therefore natural to adopt a scale-similarity hypothesis to approxi-
mate this residual. This hypothesis states that the effect of the unre-
solved scales on the resolved ones can be approximated through the
similarity of the smallest resolved scales and the biggest unresolved
modes,

f ′i ≈ f ′i = fi − f̃i, (8)

where the unresolved modes fi
′ are defined by fi = fi + f ′i . The first

and second filter levels are characterized, respectively, by the filter
widths Δ and Δ̃, where Δ̃ > Δ. The residual ri in Eq. (6) can then be
modeled as

ri∣Sj+1/2
= Vj+1/2 f ′i . (9)

It may be remarked that Eq. (8) applies to a volume filter as well as
to a surface filter.

In order to evaluate the first term on the right-hand side of
Eq. (5), the surface averaged velocity suj is to be located at the sur-
face Sj+1/2. In the case of collocated grids, no further interpolation
is required due to the fact that

V
fi and suj are already located at the

same position. In the case of staggered grids, however, Sj+1/2 uj can be
approximated by the following interpolation:

Sj+1/2 uj = Si∪Si+1 uj + qj∣Sj+1/2
, (10)

where Si∪Si+1 uj represents the surface average of uj over the surface
consisting of the union of the Si and Si+1 surfaces (see Fig. 2) and qj
is the residual of the approximation. Here, we abolish double indices
and show only the essential index for the sake of simplicity. For
instance, the j-index is abolished for the variables located at j + 1/2,
e.g., Si,j+1/2 is simplified to Si.

FIG. 2. Staggered grid: surfaces and velocities.

Here, we demonstrate only the interpolation of the y-
component of the velocity vector, i.e., u2, for the sake of brevity. The
surface average of this component at Sj+1/2 can then be written as

Si∪Si+1 u2 =
1
2
(Si u2 + Si+1 u2). (11)

As for the volume averages of fi, the applied interpolation is
interpreted as a filtering process characterized by a filter width of
Si ∪ Si+1. Hence, Si∪Si+1 u2 is also considered a doubly filtered variable,
where the first and second filter levels are characterized by filters
over Si or Si+1 and Si ∪ Si+1, respectively. Again, a natural relation
between a singly filtered variable, i.e., Sj+1/2 u2 , and a doubly filtered
variable, i.e., Si∪Si+1 u2 , is obtained. Therefore, the scale-similarity
hypothesis [see Eq. (8)] can be applied to model the residual qj,

qj∣Sj+1/2
= Sj+1/2 u′j . (12)

Since all the variables of Eq. (5) are now specified at the surface
Sj+1/2, the convective flux through this surface can finally be deter-
mined. For that purpose, we introduce Eqs. (6) and (10) in Eq. (5)
and obtain

Sj+1/2 fi uj =
Vj∪Vj+1 fi

Si∪Si+1 uj + τα
ij ∣Sj+1/2

+ τβ
ij∣Sj+1/2

, (13)

where τα
ij is the first model part (which is still to be determined) and

τβ
ij is the second model part, which is defined as

τβ
ij ∣Sj+1/2 =

Vj∪Vj+1 fi qj∣Sj+1/2
+ Si∪Si+1 uj ri∣Sj+1/2

+ (ri qj)∣Sj+1/2
. (14)

The residuals ri and qj at the surface Sj+1/2 [see Eqs. (9) and (12)]
are then introduced in Eq. (14). This results in

τβ
ijSj+1/2

= Vj+1/2 fi
Sj+1/2 uj −

Vj∪Vj+1 fi
Si∪Si+1 uj . (15)

So far, we considered only the surface Sj+1/2. By applying the
above methodology to all other surfaces, we obtain the following
second model part:

τβ
ij =

V
fi

suj −
V

f̃ i
S
ũj , (16)
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where the notation of the doubly filtered variables is simplified to
V

f̃ i

and
S
ũj .
In order to compute the nonlinear convective term in the

current form [Eq. (13) generalized to all surfaces],

S
fi uj =

V
f̃ i

S
ũj + τα

ij + τβ
ij , (17)

we still need to define the τα
ij tensor. As the second model part τβ

ij can
be fully computed based on resolved scales and is, therefore, time
reversible, it is natural to model the τα

ij tensor with an approach that
includes an irreversible loss of information into the velocity field.
Since eddy-viscosity models introduce such a loss of information in
the form of dissipation,9,10 this approach is applied here. To that
end, the τα

ij stress tensor is first decomposed into a volumetric and
deviatoric part,

τα
ij = τα, iso

ij + τα, dev
ij , (18)

where the volumetric part is

τα, iso
ij = 1

3
τkk δij. (19)

Here, δij is the Kronecker delta and τkk are the normal stresses. The
anisotropic part of the stress tensor is then modeled according to the
eddy-viscosity approach,

τα,dev
ij ≈ −

S

De
∂fi
∂xj

, (20)

which results in an increase in the diffusion coefficient. The total
diffusion coefficient becomes D +De, where De is the diffusion
coefficient related to the small scales of motion.

It may be noted that the eddy-viscosity assumption breaks the
time reversal symmetry of the underlying subgrid stress tensor, as
desired.9,10 Furthermore, it should be emphasized that although two
different filters are used to decompose the nonlinear convective term
[see Eqs. (5) and (17)], when applying these filters on a staggered
grid, they are very similar [see, e.g., Eqs. (7) and (11)]. Therefore,
even with the definition of two different filters, an eddy-viscosity
approach can still be applied to model the τα, dev

ij stress tensor.

With the definition of the first (τα
ij) and second (τβ

ij) model parts,
the nonlinear convective term [see Eq. (17)] can finally be computed
and the convection–diffusion equation for large-scale quantities on
staggered grids is obtained,

∂
V

fi

∂t
+ δj(

V
f̃ i

S
ũj) = δj

⎛
⎝

S

D
∂ fi
∂xj

⎞
⎠

− δj (τα,dev
ij + τα,iso

ij + τβ
ij), (21)

where δj denotes the finite difference operator, as defined by
Williams,29

δj( fi) =
1

Δxj
( fi i, j+1/2, k − fi i, j−1/2, k). (22)

Emphasis should be placed on the fact that Eq. (21) depends on
two models (τα

ij and τβ
ij), and that this dependence appears naturally

through the utilization of volume and surface averages to close the
nonlinear convection term on a staggered grid.

B. Incompressible Navier–Stokes equations
The methodology described in Sec. II A is extended to the

incompressible Navier–Stokes equations. First, in Sec. II B 1, the
evolution equation for the spatially averaged mass is obtained.
Second, in Sec. II B 2, the equations for the conservation of
filtered momentum are derived. Finally, the subgrid-scale stress
tensor is analyzed, and the subgrid-scale models are defined in
Secs. II C and II D.

1. Conservation of mass
In order to obtain the equation for the volume-averaged mass

conservation, the incompressibility condition ∂ui/∂xi = 0 is inte-
grated over one grid cell V . Gauss’s divergence theorem is applied,
and the continuity equation for large scales of motion is obtained,

δj
suj = 0. (23)

2. Conservation of momentum
In this section, the volume-averaged convection–diffusion

equation derived in Sec. II A [see Eq. (21)] forms the basis to obtain
the equation for the conservation of momentum of the large scales
of motion. Since Eq. (21) does not account for the effects of the pres-
sure, we first take the gradient of the pressure and filter it according
to Schumann’s28 approach,

V
∂

∂xi
p δij =

∣S∣
∣V ∣

Sp δij = δi(Sp δij), (24)

where p is the kinematic pressure. Here, the volume-averaged pres-
sure term is rewritten using Gauss’s divergence theorem and added
to the convection–diffusion equation [Eq. (21)].

The physical variable fi is substituted by the momentum density
ρui, where the fluid density is constant. Moreover, the diffusion coef-
ficients D and De are substituted by the kinematic viscosities ν and
νe, respectively. The former is the fluid kinematic viscosity, while the
latter is the effective viscosity related to the turbulence, i.e., the eddy
viscosity. In this way, we obtain a filtered momentum equation for
incompressible fluids,

∂ vui

∂t
+ δj(

V
ũi

S
ũj) = − δi(Sp δij) + δj(ν

∂ suj

∂xj
)

− δj(τα,dev
ij + τβ

ij), (25)

where the dependence on two subgrid-scale models, i.e., an eddy-
viscosity model (τα, dev

ij ) and a scale-similarity model (τβ
ij) is obtained

as before.
The first model component of the mixed model, i.e., τα

ij , is an
eddy-viscosity model [see also Eqs. (18)–(20)]. Here, the isotropic
part τα, iso

ij is incorporated in the pressure term and the anisotropic
part of this tensor (τα, dev

ij ) is modeled as

τα, dev
ij ≈ − 2 νe

SSij , (26)
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with
SSij =

1
2
( ∂

∂xj

sui +
∂

∂xi

suj), (27)

where the symmetric part of the velocity gradient, i.e., SSij , is used
instead of the full gradient [see Eq. (20)] to ensure conservation of
angular momentum.

The second component of the mixed model, i.e., τβ
ij , is a scale-

similarity model [see Eq. (16)], which is defined by

τβ
ij = cB(vui

suj −
V

ũi
S
ũj). (28)

The tensor τβ
ij can be interpreted as a variation of the scale-similarity

model proposed by Bardina et al.,4 where both volume and surface
averages are employed (note that the Bardina model contains only
volume averages, ui uj − ũi ũj). The Bardina model approximates
the interaction of turbulent structures and is known for being able
to include backscatter of energy. Speziale30 recommended to take
a Bardina model constant of cB = 1.0 to ensure that the model is
Galilean invariant.

The mixed model obtained here has a similar form as the
mixed models generated by ad hoc linear combinations of models,
as, for instance, proposed by Bardina et al.4 Therefore, the deriva-
tion proposed in this work provides a mathematical basis for mixed
models. Moreover, the proposed methodology also substantiates the
power of these models, since they naturally follow from the filtered
Navier–Stokes equations.

C. Single-layer AMD–Bardina model
In the current work, the eddy viscosity νe [see Eq. (26)] is com-

puted according to the anisotropic minimum-dissipation (AMD)
model proposed by Rozema et al.,24

νe = cAMD
max{−(SΔk ∂ sui/∂xk)(

SΔk ∂ suj/∂xk)
SSij , 0}

(∂ Sum/∂xl)(∂ Sum/∂xl)
. (29)

The AMD model is applied in this work since it aims to provide the
minimum necessary dissipation to remove the subgrid scales from
the solution.25 Moreover, this turbulence model has already been
successfully tested, for instance, in simulations of turbulent chan-
nel flows discretized on anisotropic grids (see Refs. 24 and 31). Since
we have used two filters (a volume filter for the densities and a sur-
face filter for the fluxes) to define the subgrid term, the filter length
is to be taken slightly different than in the standard AMD model.
Here,

SΔk is the filter width in the k-direction of the surface filter,
and cAMD is the model constant for which the recommended value
in the literature is cAMD = 0.3 for a central spatial discretization (see
Ref. 24).

When applying the AMD model as the eddy-viscosity model
part, we obtain the single-layer AMD–Bardina model (also referred
to as the AMD–Bardina model),

τAMD, B
ij = τα, dev

ij + τβ
ij , (30)

where τα, dev
ij and τβ

ij are defined by Eqs. (26) and (28), respec-
tively, and the eddy viscosity is given by Eq. (29). This mixed

model is promising due to the complimentary nature of the applied
functional and structural models, i.e., the AMD model accounts
for the turbulent kinetic energy dissipation, whereas the Bardina
model accounts for the interaction between turbulent structures. In
order to also introduce boundary-layer physics in the AMD–Bardina
model for wall-bounded flows, we further develop this model into a
two-layer approach.

D. Two-layer AMD–Bardina model for wall-bounded
flows

The physical processes present in wall-bounded flows vary with
the distance to the wall, i.e., the farther away from the wall, the higher
the influence of the turbulent transport and the lower the influence
of the viscous stresses. In order to obtain a mixed model that respects
the physics of boundary layers, we propose a two-layer approach of
the AMD–Bardina model for wall-bounded flows.

Wall-bounded flows can be roughly divided into a universal
inner layer and a flow-dependent outer layer, each characterized by
specific flow dynamics and scaled with different sets of variables
(see, e.g., Ref. 26). The dynamics of the inner layer is universal,
however still highly complex. Usually, this layer is further divided
into the viscous, buffer, and log-law layers. The viscous sublayer
is characterized by viscous stresses, whereas the log-law region is
characterized by turbulent stresses. The buffer layer is considered
a transition region, and therefore, both momentum transport due to
dissipation and turbulent fluctuations must be considered. The outer
layer, on the other hand, is dominated by the interaction of turbulent
structures.

In order to take the various flow phenomena present in near-
wall turbulence into account, we propose the utilization of a two-
layer approach for the AMD–Bardina mixed model (see Fig. 3):
the AMD–Bardina model is utilized in the near-wall domain, i.e.,
in the inner layer, since this model introduces dissipation through
the eddy-viscosity model part while accounting for the interaction
between turbulent structures as well as for backscatter of energy
through the scale-similarity part. Farther away from the wall, the
viscous stresses play a less important role than the turbulent stresses.
We then apply only the scale-similarity model in the outer layer since
this model, i.e., the Bardina model, is able to capture the interaction
between turbulent structures that characterize this region.

The interface between the near-wall and channel-center
domains is located at yint (considering the bottom half of the

FIG. 3. Turbulent channel flow divided into the near-wall and channel-center
domains. The matching line, i.e., interface, between both regions is located at y int
for the bottom half of the channel, and at Ly − y int for the top half of the channel,
with Ly being the channel height.

AIP Advances 11, 015002 (2021); doi: 10.1063/5.0015293 11, 015002-6

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 4. Graphical representation of the smoothed model constant cs for a channel
with half-channel width Ly/2. The model constants used in the smoothing function
are cnw at the near-wall region and cc at the channel-center region. The smoothing
center is located at sc .

channel), as illustrated in Fig. 3. This interface divides the chan-
nel flow into two regions: the near-wall domain solved with the
AMD–Bardina model and the channel-center domain computed
with the Bardina model. In order to follow the boundary-layer
physics, the matching line must be located in the log-law region
so that the inner and buffer layers are entirely solved with the
AMD–Bardina model, whereas the outer layer is fully computed
with the Bardina model.

As in two-layer approaches such as hybrid RANS-LES and
detached-eddy simulation (DES), a mismatch in the statistics occurs
in the interface of near-wall and outer regions (see Refs. 32 and 33) if
the transition from one model/approach to the other is not correctly
treated. Here, we apply a hyperbolic tangent smoothing function for
the model constants in order to smoothly turn off the AMD model
and avoid a jump in the subgrid-scale stresses at the matching posi-
tion. Although the model constants vary with the distance to the wall
and could therefore be interpreted as model coefficients, we keep
referring to these variable (as cAMD and cB) as model constants. For
the bottom half of the channel domain, this smoothing function is
given by

c s
j = cnw + (0.5 + 0.5 tanh( yj − sc

s f
))(cc − cnw), (31)

which is graphically represented in Fig. 4.
Here, c s

j is the smoothed model constant of the j − th cell in
the y-direction. The desired model constants at the near-wall and
channel-center regions are cnw and cc, respectively. The wall-normal

coordinate of the cell is yj, and the smoothing center and smoothing
factor are sc and s f , respectively.

III. NUMERICAL SETUP
In order to test the original single-layer and two-layer

AMD–Bardina models, turbulent channel flows at several values
of Reynolds numbers are computed with a code derived from the
TBFsolver.34 The considered test cases are summarized in Table I.

The governing equations, i.e., Eqs. (23) and (25), are discretized
in time using a second-order Adams–Bashforth time integration
scheme and are discretized in space using a central second-order-
accurate symmetry-preserving discretization for the convective and
diffusive terms (see Ref. 35). Perturbed parabolic profiles are used
as initial conditions, and a constant pressure gradient is imposed
in order to achieve the desired friction Reynolds numbers. No-slip
boundary conditions are applied at the wall, and periodic bound-
ary conditions are applied in the streamwise (x1) and spanwise (x3)
directions.

Staggered grids are applied, which are stretched near the wall
according to a hyperbolic tangent function. The applied stretch-
ing factor is adapted to each case in order to ensure that the first-
grid point is located at x+2 < 2, and the wall-normal resolution at
the channel center is fine enough to capture the large eddies. The
applied grid resolutions are consistent with the resolutions sug-
gested by Georgiadis et al.36 and Choi and Moin37 for the spanwise
direction and for the streamwise direction of the channel flows at
Reτ = 180 and Reτ = 590. The streamwise grid sizes in terms of the
viscous length scales of the channel flows at Reτ = 395 and Reτ = 950
are slightly smaller than those recommended by Georgiadis et al.36

for wall resolved LES, i.e., 50 ≤ Δx+1 ≤ 150. These grid resolutions
are, nevertheless, not DNS resolutions,36 i.e., 10 ≤ Δx+1 ≤ 20. There-
fore, the subgrid-scale models still have an effect on the momentum
equations of the channel flows at Reτ = 395 and Reτ = 950.

The subgrid-scale stress tensor is approximated with the single-
layer and two-layer AMD–Bardina models, as well as with the AMD
and Bardina models alone. In order to compare the effect of the
applied turbulence models, simulations are also carried out on a
coarse grid neglecting the effect of the small scales, i.e., without
applying any subgrid-scale model.

IV. RESULTS AND DISCUSSION
The results of the simulations are presented as time- and

spatially averaged values, denoted by ⟨⋅⟩. The spatial average is

TABLE I. Summary of simulation parameters. Here, Li and ni , with i = 1, 2, 3, are the dimensions of the channel and the number of grid points in the streamwise, wall-normal,
and spanwise directions. The grid spacings in units of the viscous length scales are Δx+1 and Δx+3 for the streamwise and spanwise directions, respectively. For the wall-normal
direction, the grid spacings in wall units are reported at the first cell near the wall (Δx+2, w ) and at the channel center (Δx+2, c). The friction Reynolds number (Reτ ) is based on the

half-channel height δ and the friction velocity uτ =
√ τw

ρ , with τw being the mean wall shear stress.

Reτ L1 L2 L3 n1 n2 n3 Δx+1 Δx+2, w Δx+2, c Δx+3

180 4πδ 2δ 4
3 π δ 32 32 32 71 1.17 21 24

395 2πδ 2δ πδ 64 64 64 39 1.25 23 19
590 2πδ 2δ πδ 64 64 64 58 1.86 35 29
950 2πδ 2δ πδ 128 128 128 47 1.48 28 21
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applied in the homogeneous directions, i.e., in the stream- and span-
wise directions. Furthermore, the results are normalized in wall
units, indicated by a superscript + (the coordinates, velocities, and
Reynolds stresses in plus units are defined by x+i = xiuτ

ν , u+i = ui
uτ

, and

R+ij =
Rij

u2
τ

, respectively). The coordinates x1, x2, x3 and x, y, z are used

interchangeably.
The results are presented and compared with the direct numer-

ical simulations (DNS) of Moser et al.38 and of Hoyas and Jimenéz.39

Since this work applies LES models that are traceless (the AMD
model) or partially traceless (the AMD–Bardina model), only the
deviatoric Reynolds stresses can be reconstructed and directly com-
pared with the DNS data.40 This comparison is carried out through

R DNS, dev
ij = R LES, dev

ij + ⟨τ SGS, dev
ij ⟩, (32)

where ⟨τ SGS, dev
ij ⟩ is the averaged deviatoric subgrid-scale stress ten-

sor and R dev
ij is the deviatoric Reynolds stress tensor. Here, the

Reynolds stress tensor is defined as

Rij = ⟨ui uj⟩ − ⟨ui⟩⟨uj⟩, (33)

where ui represents the velocity vector in DNS simulations and the
coarse-grid velocity vector in LES simulations. In order to maintain
consistency, the deviatoric part of the second-order statistics is used
as a comparison tool even for simulations that could reconstruct the
full Reynolds stress tensor, i.e., the computations with the Bardina
model.

This section is organized as follows: First, in Sec. IV A, the
sensitivity of the single-layer AMD–Bardina model to the model
constants is studied. The optimal model constants for the single-
layer AMD–Bardina model are then selected, and the predictions
obtained with the mixed model are compared with the DNS database
of Moser et al.,38 as well as with large-eddy simulations using the
AMD model, the Bardina model and, no subgrid-scale model. After
that, in Sec. IV B, the two-layer AMD–Bardina model is applied.
The interface location is studied, and a rule of thumb is defined
for the positioning of this matching location. Finally, the obtained
results for both the single-layer and two-layer approaches of the
AMD–Bardina model are compared with the DNS database of
Moser et al.38 and Hoyas and Jiménez.39

A. Single-layer AMD–Bardina model
In this section, the effects of the single-layer AMD–Bardina

model on turbulent channel flows are investigated. Simulations
are carried out at Reτ = 180, Reτ = 395, and Reτ = 590. We how-
ever show detailed results only for turbulent channel flows at
Reτ = 590 for the sake of brevity. The sensitivity of the single-layer
AMD–Bardina model to the model constants is investigated first.
Then, the optimal constants for this mixed model are selected.
Finally, the results obtained with the single-layer AMD–Bardina
model are compared to the results of large-eddy simulations apply-
ing the AMD model, the Bardina model, and no model, as well as the
DNS results of Moser et al.38

1. Model setup
Here, the robustness of the single-layer AMD–Bardina model is

investigated with respect to changes in the model constants, aiming

at the determination of the optimal model constants to be applied
in this work. In order to provide a better quantitative evaluation of
the results, we normalize the LES results by the DNS results. For
instance, the DNS normalized mean bulk velocity is given by

∥ub∥DNS =
ub, LES

ub, DNS
, (34)

where ∥ub∥DNS is the DNS normalized mean bulk velocity and ub,LES
and ub,DNS are the mean bulk velocities obtained with the large-eddy
simulation and from the DNS reference data, respectively.

First, we analyze the sensitivity of the single-layer
AMD–Bardina model to the model constants with regard to
the normalized bulk velocity and peak height of the Reynolds
stresses (see Fig. 5). A total of 36 simulations at Reτ = 590 with
model constants in the interval of 0 ≤ cB ≤ 1.1 and 0 ≤ cAMD ≤ 0.4
are carried out and indicated with black dots in Fig. 5. Here, all
results are normalized by the DNS results of Moser et al.38

The mean bulk velocity varies significantly with the model con-
stants, as illustrated in Fig. 5(a). An increase in the AMD model
constant increases the prediction of the bulk velocity, whereas an
increase in the Bardina model constant tends to decrease the bulk
velocity. Although the bulk velocity is well predicted for cAMD = 0.2
and cB = 0.2, as well as for cAMD = 0.2 and cB = 0.4, the mean veloc-
ity profile is overestimated in the first half of the outer region (as
illustrated in Fig. 6). A compromise in the prediction of the mean
velocity profile must then be reached: the mean velocity is either well
predicted until the first half of the outer region and underpredicted
in the bulk or the bulk velocity is well predicted, while the mean
velocity profile in the first half of the outer region is overestimated.
Here, we prefer to compromise the quality of the mean bulk velocity
while obtaining a good estimation of the mean velocity profile until
the first half of the channel-center region.

The prediction of the peak heights of the Reynolds stresses is
subsequently analyzed [see Figs. 5(b)–5(e)]. The peak height of the
Reynolds shear stress R12 is well predicted for all model constants
[see Fig. 5(e)], whereas the peak heights of the normal Reynolds
stresses [see Figs. 5(b)–5(d)] are strongly dependent on the model
constants when applying the mixed model or the Bardina model
alone (cAMD = 0). The AMD model tends to overestimate the peak
heights of all normal Reynolds stresses independently of the applied
model constants, which seems to be a feature of eddy-viscosity
models.41 The Bardina model, on the other hand, is very sensitive to
variations in the model constants and yields a better prediction of the
peak heights for model constants near the unity. As the unity Bar-
dina model constant, i.e., cB = 1.0, maintains the Galilean invariance
of the governing equations (see Ref. 30) while accurately predicting
the peak heights of the mean Reynolds stresses, this model constant
is further applied in this work for the single-layer AMD–Bardina
model.

Here, we take cB = 1.0 and proceed with the analysis of the
AMD model constant. Figure 7 illustrates the normalized mean bulk
velocity, and the normalized peak height (lines without markers) and
peak width (lines with circular markers) of the Reynolds stresses as a
function of the AMD model constant (with cB = 1.0). An increase
in the AMD model constant improves the prediction of the bulk
velocity, whereas the prediction of the peak width of the Reynolds
stresses is strongly deteriorated. The peak height of the Reynolds
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FIG. 5. Sensitivity of the AMD–Bardina model to the model constants for a turbulent channel flow at Reτ = 590. Black dots represent the simulations that were actually
carried out. A polynomial interpolation of fifth degree is applied in order to generate a surface from the scattered data. The color map indicates how well the LES simulations
predict (a) the mean bulk velocity and the peak height of the (b) stream-wise, (c) wall-normal, (d) span-wise, and (e) Reynolds shear stresses compensated with the
averaged model contribution. The results are normalized by the DNS results of Moser et al.38

stresses, on the other hand, is only slightly affected by the AMD
model constant when applying cB = 1.0 [as concluded earlier after
the analysis in Figs. 5(b)–5(e)]. The best results for the single-layer
AMD–Bardina model are obtained with cB = 1.0 and cAMD = 0.2.
These constant values are then further applied in this work. An AMD
model constant of cAMD = 0.2 is smaller than the cAMD = 0.3 recom-
mended by Rozema et al.24 for a central second-order-accurate spa-
tial discretization using solely the AMD model. A reduction in the
eddy-viscosity model constant is, however, not surprising and was
already reported by Zang et al.14 when using a dynamic mixed model
that applies the Bardina–Smagorinsky model as the base model. The

Bardina model clearly introduces some dissipation, which must be
accounted for through a decrease in the AMD model constant when
applying the mixed model.

The thorough analysis of the constants of the AMD and the
Bardina model parts for the single-layer AMD–Bardina model
revealed that the optimal constants for this mixed model are cAMD
= 0.2 and cB = 1.0 for channel flows at Reτ = 590. Similar studies
were performed for channel flows at Reτ = 180, Reτ = 395, and Reτ
= 950 and are not shown here for the sake of brevity. Only a weak
dependence of the model constants on the friction Reynolds num-
ber was observed, and the model constants cAMD = 0.2 and cB = 1.0
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FIG. 6. Mean velocity profile for a turbulent channel flow at Reτ = 590 approxi-
mated with the single-layer AMD–Bardina model with the model constants cAMD
= 0.2 and cB = 0.2. DNS results of Moser et al.38 (MKM) are depicted for
reference.

FIG. 7. Normalized mean bulk velocity (black solid line), and normalized peak
height (without markers) and peak width (with markers) of the stream-wise (black
dashed curve), wall-normal (blue dotted-dashed curve), span-wise (blue solid
curve), and shear (blue dotted curve) Reynolds stresses, as obtained from large-
eddy simulations at Reτ = 590 applying the single-layer AMD–Bardina model with
cB = 1.0. The peak width of the Reynolds stresses is computed at half prominence,
and all results are normalized by the DNS results of Moser et al.38

are, therefore, applied for the single-layer mixed model in the rest of
this work.

2. Model predictions
The quality of the single-layer AMD–Bardina model (with

cAMD = 0.2 and cB = 1.0) is assessed through turbulent channel
flow simulations at Reτ = 590. The first- and second-order statistics
obtained with the single-layer mixed model are compared to the out-
come of the simulations with the AMD model (with cAMD = 0.3) and
the Bardina model (with cB = 1.0), as well as with the results of a no-
model simulation and the DNS database of Moser et al.38 The results
are illustrated in Fig. 8, and the Reynolds numbers of the converged
simulations are summarized in Table II.

The mean velocity profile is underpredicted by both the no-
model and Bardina model simulations [see Fig. 8(a)]. These underes-
timations can be explained by the fact that the no-model simulation
does not account for the effect of the small scales, and the Bardina
model is known for not providing enough dissipation.4 The mean
velocity profile predicted with the Bardina model is also underes-
timated in comparison to the no-model simulation. This behavior
is not surprising if the friction Reynolds numbers of the converged
simulations are analyzed (see Table II). The friction Reynolds num-
ber of the LES simulation with the Bardina model is 1.6% higher
than the friction Reynolds number achieved by the direct numeri-
cal simulations (and 1.5% higher than the no-model simulations).
Due to the fact that the friction Reynolds number is inversely pro-
portional to the mean velocity in plus units, the underestimation
of the mean velocity is expected for the Bardina model simula-
tion. In contrast to the Bardina model, the AMD model dissipates
enough turbulent kinetic energy to remove the subgrid scales from
the solution,24 predicting well the mean velocity in the near-wall
region and in the bulk. The mean velocity between the near-wall
region and the bulk is, however, overpredicted since the AMD model
is not capable of representing the interactions between turbulent
structures.

From the mean velocity fields of the AMD and Bardina mod-
els alone, it is clear that these models are of complementary nature.
The AMD–Bardina model combines the dissipative properties of
the AMD model with the abilities of the Bardina model to account
for the interactions of turbulent structures, as well as the back-
ward energy cascade. The results obtained with the single-layer
AMD–Bardina model show a great improvement in comparison
to the utilization of the regarded models alone. The single-layer
mixed model is able to predict really well the mean velocity profile
up to y+ ≈ 200. This mixed model is, however, not able to capture
the inflection of the mean velocity in the second half of the outer
region.

Not surprisingly, the mixed model has, in overall, also a positive
effect on the prediction of the second-order statistics. The near-wall
peak heights of the normal Reynolds stresses are overpredicted (in
magnitude) in the streamwise, wall-normal, and spanwise directions
for the AMD and no-model simulations [see Figs. 8(b)–8(d)]. The
AMD model has almost no effect on the prediction of the peak height
when compared to the no-model simulation, which seems to be a
feature of eddy-viscosity models.41 This eddy-viscosity model how-
ever overpredicts the peak width of the normal Reynolds stresses.
The Reynolds shear stress is overestimated for the no-model, AMD,
and AMD–Bardina simulations [see Fig. 8(e)]. The Bardina model
works remarkably well for the prediction of the shear stress, as
well as for the prediction of the near-wall peak height of the nor-
mal stresses. The peak width of the normal stresses is, however,
underestimated.

The complementary nature of the AMD and Bardina models
can also be observed from the second-order statistics: the AMD
model overpredicts the peak heights and widths of the normal
Reynolds stresses, whereas the Bardina model predicts well the peak
heights and underestimates the peak widths. Mixing the AMD and
Bardina models yields, then, a great improvement in the prediction
of the normal stress peak heights and peak widths when compared to
the AMD model alone, although the peak widths of the stream-wise
and wall-normal stresses are still somewhat overestimated.
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FIG. 8. (a) Mean velocity profile, and (b) streamwise, (c) wall-normal, (d) spanwise, and (e) Reynolds shear stresses considering the contribution of the model for a turbulent
channel flow at Reτ = 590. Results are shown for simulations without a subgrid-scale model (no-model simulation), with the AMD model (cAMD = 0.3), with the Bardina
model (cB = 1.0), and with the single-layer AMD–Bardina model (cAMD = 0.2 and cB = 1.0). DNS results of Moser et al.38 (MKM) are depicted for reference.

B. Two-layer AMD–Bardina model
The two-layer AMD–Bardina model is investigated for turbu-

lent channel flows at Reτ = 180, Reτ = 395, Reτ = 590, and Reτ = 950.
First, the effect of the smoothing function [see Eq. (31)] on the
model constants is investigated, and the function parameters are
fixed for the two-layer AMD–Bardina model. Second, the location

TABLE II. Friction Reynolds numbers obtained for the simulations of turbulent
channel flows at Reτ = 590. MKM represents the DNS results of Moser et al.38

MKM No model AMD Bardina AMD–Bardina-1L

587.19 587.80 582.56 596.77 586.71

of the interface between near-wall and outer domains is studied and
its proper location is defined. Afterward, we fix the constants of the
two-layer AMD–Bardina model in order to enable an easy appli-
cation of the mixed model. Finally, the two-layer AMD–Bardina
model is applied in simulations of flows having various Reynolds
numbers, and the results are compared to the single-layer
AMD–Bardina model, as well as to no-model simulations and to
DNS databases.

1. Model setup
Conceptually, the two-layer AMD–Bardina model divides the

flow domain into two regions: a near-wall region and an outer
region. Because the AMD–Bardina model is applied in the near-
wall region and the Bardina model is used in the outer region,
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a smoothing function is needed in order to avoid a mismatch of
the flow statistics at the interface (as commonly happens in two-
layered approaches such as hybrid RANS-LES32,33). Here, we apply
the hyperbolic tangent smoothing function given by Eq. (31) to
smoothly turn off the AMD model at the interface. This smooth-
ing function has two parameters: the smoothing center sc and the
smoothing factor s f . Here, we want to fix these parameters for all
two-layer AMD–Bardina model simulations in order to simplify the
usage of the two-layer mixed model.

The smoothing center is simply fixed at the interface location
yint since this is the location where the model constants change
abruptly. The smoothing factor, on the other hand, is taken as a
linear function of the interface location in order to guarantee an ade-
quate level of smoothness for interfaces located both close to the wall
and distant from the wall. Here, we define the smoothing factor as

s f = bs f yint, (35)

where the slope of the smoothing factor function is called the
smoothing factor coefficient bsf .

The influence of the smoothing factor coefficient is investigated
for two different channel flows with a height of Ly = 2.0: one with
the interface located at yint = 0.03 and the other with the interface
located at yint = 0.2. Here, the coordinates of the interface are not
taken in wall units since the smoothing function is only related to the
physical dimensions of the channel. Three smoothing factor coeffi-
cients are tested for both interface locations (bsf = 0.2, bsf = 0.7, and
bsf = 1.0); the results are illustrated in Fig. 9.

Although an increase in the smoothing factor coefficient
increases the smoothness of the model constant, the values of the
smoothed constants deviate more from the desired value in the near-
wall region, i.e., cnw [see Eq. (31)]. In order to maintain consistency
with the determined model constants for the near-wall and channel-
center regions, and to ensure the smoothness of the constants in the

whole domain, we further apply a smoothing factor coefficient of
bsf = 0.7. This coefficient guarantees low constant gradients in the
whole domain while ensuring that the smoothed constants remain
close to the desirable values even for small yint.

The location of the interface is viewed as a parameter of the
smoothing function. As this variable depends on the flow conditions,
it needs to be studied closely. The location of the matching line is
investigated for two turbulent channel flows at Reτ = 590: one with
the interface located at yint,1 = 0.08 and the other with the match-
ing line located at yint,2 = 0.35. The former interface position, i.e.,
yint,1 = 0.08, is chosen since it is located in the log-law region of the
boundary layer. This choice allows for the computation of the peaks
of the Reynolds stresses with the mixed AMD–Bardina model (see
Fig. 8 for the DNS reference of the peak location of the Reynolds
stresses). Moreover, this interface is located close to the peak of the
Reynolds shear stress (see Table III), which lies the farthest away
from the wall (compared to the other Reynolds stress peaks). The
latter interface location, i.e., yint,2 = 0.35, is based on the position
of the matching line used in the hybrid RANS/LES simulations of
Hamba.33 The model constants are obtained in a similar manner as
done for the single-layer AMD–Bardina model (see Sec. IV A 1).
The optimal values for each case are (1) cAMD,1 = 0.5 in the near-
wall region and cB,1 = 0.6 in the whole domain, and (2) cAMD,2
= 0.3 in the near-wall region and cB,2 = 0.6 in the whole domain.
The results obtained for both interface locations are illustrated in
Fig. 10. Here, the bulk velocity and the peak height and width
of the Reynolds stresses are normalized using the DNS results of
Moser et al.38

Figure 10 shows that the location of the interface has a strong
influence on the statistics. The Reynolds shear stress is clearly bet-
ter predicted if the interface is located farther away from the wall
(yint,2 = 0.35). The peak heights of the normal Reynolds stresses are,
on the other hand, more accurately predicted if the interface is
located closer to the wall, i.e., at yint,1 = 0.08. The peak widths of

FIG. 9. Outcome of the application of the smoothing function to (a) the model constant and (b) the model constant gradient with regard to a channel flow. Two cases are
illustrated and indicated by a subscript: (1) the interface is located at y int = 0.03 and is depicted with dark-colored lines and (2) the interface is located at y int = 0.2 and
is depicted with light-colored lines. The non-smoothed constants c are indicated by a solid line, whereas the smoothed constants cs are indicated by a dashed line. The
quadratic, triangular, and circular markers indicate that the smoothing factor coefficients are bα

s f = 1.0, bβ
s f = 0.7, and bγ

s f = 0.2, respectively. The channel flow has a
height of Ly = 2.0, which is discretized with 64 grid points that are stretched in the wall-normal direction with a stretching factor of γ = 1.8. The thin light-colored lines
indicate the location of the interfaces, i.e., y int, and the arrow indicates the direction in which the smoothing factor s f increases.
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TABLE III. Turbulent channel flow simulations with the two-layer AMD–Bardina
model: Reτ is the desired friction Reynolds number, whereas Re a

τ is the actual
Reynolds number obtained in the simulations. The interface is located at y int (y+int
in plus coordinates), close to the location of the peak of the Reynolds shear stress
R pl, +

12 . This location ensures that the peaks of all Reynolds stresses are solved with
the AMD–Bardina model.

Reτ Re a
τ yint y+int R pl, +

12

180 178.69 0.24 42.88 30.02
395 392.61 0.11 43.19 41.88
590 578.27 0.08 46.26 44.70
950 941.28 0.08 75.30 52.05

the normal Reynolds stresses are only slightly better predicted if the
interface location is based on the work of Hamba33 (yint,1 = 0.35).
In short, taking the interface at yint,1 = 0.08 provides, in general, the
best results for the Reynolds stresses.

The bulk velocity illustrated in Fig. 10 is well predicted for
both interface locations. The mean velocity profiles, however, dif-
fer. Figure 13(a) shows that the whole mean velocity profile is well
predicted if the interface is located at yint,1 = 0.08. On the other
hand, if the interface is located at yint,2 = 0.35, the inflection of
the mean velocity in the channel center cannot be captured and
the mean velocity profile has a similar slope to the one obtained
with the single-layer AMD–Bardina model [see Fig. 8(a)]. The two-
layer AMD–Bardina model with yint,2 = 0.35 presents, then, the same
behavior as the single-layer AMD–Bardina model for the first-order

FIG. 10. Influence of the interface location on the first- and second-order statis-
tics for a turbulent channel flow at Reτ = 590. The bulk velocity is indicated by
a rhombus, whereas the R11, R22, R33, and R12 Reynolds stresses are indi-
cated by an upward-pointing triangle, a square, a circle, and a right-pointing
triangle, respectively. For the Reynolds stresses, the filled markers indicate the
peak height, whereas the empty markers indicate the peak width computed at
half prominence. Two interface locations are analyzed: y int,1 = 0.08 depicted with
dark-colored markers and y int,2 = 0.35 indicated with light-colored markers. The
simulation for the former interface location applies cAMD,1 = 0.5 in the near-wall
region and cB,1 = 0.6 in the whole domain, whereas the simulation for the latter
interface location applies cAMD,2 = 0.3 in the near-wall region and cB,2 = 0.6 in the
whole flow domain. All results are normalized by the DNS results of Moser et al.38

statistics: it can capture either the inflection of the mean velocity in
the first half of the outer region (with lower AMD model constants)
or in the second half of the outer region (with higher AMD model
constants).

The differences in the mean velocity profiles obtained with both
interface locations are further quantified using a relative error mea-
sure that is given by the L2 norm of the difference of the DNS and
LES mean velocities, scaled by the DNS mean velocity,

Er = L2(uj, DNS/LES) =
¿
ÁÁÀ

n2

∑
j = 1

u2
j, DNS/LES, (36)

with

uj, DNS/LES =
⟨u+, DNS

1, j ⟩ − ⟨u+, LES
1, j ⟩

⟨u+, DNS
1, j ⟩

, (37)

where n2 is the number of grid points in the wall-normal direction.
The relative error is Er2 = 0.130 if the interface is located at yint,2
= 0.35, whereas the relative error is only Er1 = 0.042 if the interface
is located closer to the wall. The velocity profile in the whole domain
is, thus, much better estimated when the interface is located near
the wall, i.e., at yint,1 = 0.08. Therefore, using the AMD model for a
smaller region, i.e., up to yint,1 = 0.08, provides the best results for
the first-order statistics.

Considering the mean velocity and the Reynolds stresses, the
interface must, then, be located near the wall in order to obtain a
good prediction of the first- and second-order statistics. The match-
ing line, however, must not be located too close to the wall in order
to ensure that the viscous sublayer and the buffer layer are mod-
eled with the AMD–Bardina model. The interface must, in fact, be
located in the log-law region. Note that in this subregion of the
boundary layer, the viscous effects can be neglected. The log-law
region is, however, large, and significant differences in the first- and
second-order statistics are observed for interfaces located at differ-
ent points in the log-law region. As a rule of thumb, we position
the interface such that the peaks of all Reynolds stresses are solved
with the AMD–Bardina model. Since the peak of the Reynolds shear
stress is located the farthest away from the wall for turbulent chan-
nel flows, we position the interface near this peak in order to obtain
optimal results with the two-layer AMD–Bardina model. Hence, we
place the matching line in the interval R pl, +

12 < y+int ≤ 1.5 R pl, +
12 , where

R pl, +
12 is the peak location of the Reynolds shear stresses.

Since the interface location cannot be fixed for all large-eddy
simulations with the two-layer AMD–Bardina model, this location
becomes a model parameter. Although this model parameter is
obtained in an ad hoc manner when seen from a mathematical point
of view, its value is defined based on the physics of wall-bounded
flows. The two-layer AMD–Bardina model has three model param-
eters: the interface location and the constants of the AMD and Bar-
dina model parts. The definition of these three model parameters,
however, increases the a priori effort required to use the two-layer
mixed model. Therefore, we reduce the number of model parameters
by fixing the AMD and Bardina model constants.

A study of the model constants similar to the one reported for
the single-layer AMD–Bardina model (see Sec. IV A 1) is performed
for a variety of friction Reynolds numbers, and it is not shown here
for the sake of brevity. As a result of this study, we fix the AMD
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and Bardina model constants to cAMD = 0.5 in the near-wall region
and cB = 0.6 in the whole flow domain, as we noted that these model
constants provide optimal results. It is important to remark that the
two-layer AMD–Bardina model is only able to capture the inflection
of the mean velocity in the channel center when applying a Bardina
model constant of cB = 0.6 for the whole domain. This behavior is,
however, still not fully understood by the authors. Furthermore, the
utilization of a Bardina model constant different from unity means
that the Galilean invariance of the turbulence description is lost.30

2. Model predictions
The two-layer AMD–Bardina model is analyzed for turbu-

lent channel flows at Reτ = 180, Reτ = 395, Reτ = 590, and Reτ

= 950. The chosen locations of the interfaces are given in Table III,
along with the locations of the peaks of the Reynolds shear stresses
and the actually obtained friction Reynolds numbers. The first-
and second-order statistics of the two-layer approach are com-

pared with the results obtained with the single-layer AMD–Bardina
model, as well as with no-model simulations and DNS databases.38,39

Figures 11–14 illustrate the LES results at Reτ = 180, Reτ = 395,
Reτ = 590, and Reτ = 950, respectively.

For the turbulent channel flow at Reτ = 180 (see Fig. 11), the
utilization of both AMD–Bardina models increases the quality of the
results in comparison to the no-model simulation. When comparing
both mixed models with the no-model simulation, it is notable that
the first-order statistics are predicted slightly better in the channel

FIG. 11. (a) Mean velocity profile and (b) streamwise, (c) wall-normal, (d) spanwise, and (e) Reynolds shear stresses considering the contribution of the model for a turbulent
channel flow at Reτ = 180. Results are presented for simulations without a subgrid-scale model (no-model simulation), with the AMD model (cAMD = 0.3), with the Bardina
model (cB = 1.0), with the single-layer AMD–Bardina model (cAMD = 0.2 and cB = 1.0), and with the two-layer AMD–Bardina model (cAMD = 0.5 in the near-wall region and
cB = 0.6 in the whole domain). DNS results of Moser et al.38 (MKM) are depicted for reference.
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FIG. 12. (a) Mean velocity profile and (b) streamwise, (c) wall-normal, (d) spanwise, and (e) Reynolds shear stresses considering the contribution of the model for a turbulent
channel flow at Reτ = 395. Results are presented for simulations without a subgrid-scale model (no-model simulation), with the AMD model (cAMD = 0.3), with the Bardina
model (cB = 1.0), with the single-layer AMD–Bardina model (cAMD = 0.2 and cB = 1.0), and with the two-layer AMD–Bardina model (cAMD = 0.5 in the near-wall region and
cB = 0.6 in the whole domain). DNS results of Moser et al.38 (MKM) are depicted for reference.

center with both AMD–Bardina models, whereas the second-order
statistics are predicted much better with the mixed models. The
single-layer approach usually captures the normal Reynolds stresses
better than the two-layer approach, whereas only slight differences
are present in the Reynolds shear stress.

The turbulent channel flow at Reτ = 395 (see Fig. 12) shows
larger differences between the single-layer and two-layer mixed
models. The single-layer AMD–Bardina model is not able to capture
the mean velocity profile in the channel center, whereas the two-
layer mixed model predicts the mean velocity profile remarkably
well. The Reynolds shear stress is well predicted by both mixed mod-
els, and no significant differences can be observed. In addition, the

stream-wise Reynolds stress does not present any significant discrep-
ancies. The wall-normal stress is better predicted by the single-layer
approach, whereas the two-layer AMD–Bardina model estimates the
span-wise Reynolds stress better. In short, the two-layer approach
is clearly superior since it is able to approximate the mean velocity
profile almost perfectly.

The turbulent channel flow at Reτ = 590 is, subsequently, inves-
tigated (see Fig. 13). As was the case for Reτ = 395, the mean
velocity profile is remarkably well predicted with the two-layer
AMD–Bardina model. The normal Reynolds stresses obtained with
the mixed models are greatly improved compared to the no-
model simulation. Although the differences between both mixed

AIP Advances 11, 015002 (2021); doi: 10.1063/5.0015293 11, 015002-15

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 13. (a) Mean velocity profile and (b) streamwise, (c) wall-normal, (d) spanwise, and (e) Reynolds shear stresses considering the contribution of the model for a turbulent
channel flow at Reτ = 590. Results are presented for simulations without a subgrid-scale model (no-model simulation), with the AMD model (cAMD = 0.3), with the Bardina
model (cB = 1.0), with the single-layer AMD–Bardina model (cAMD = 0.2 and cB = 1.0), and with the two-layer AMD–Bardina model (cAMD = 0.5 in the near-wall region and
cB = 0.6 in the whole domain). DNS results of Moser et al.38 (MKM) are depicted for reference.

models are minor, the single-layer AMD–Bardina model estimates
the span-wise stresses better, whereas the wall-normal stresses
are slightly better predicted by the two-layer approach, and the
stream-wise stresses of both models are essentially of equal qual-
ity. The Reynolds shear stress is slightly deteriorated if the two-
layer AMD–Bardina model is applied. The reason for this is not
clear.

In order to show that the two-layer AMD–Bardina model pro-
vides superior predictions for high Reynolds numbers, a turbulent
channel flow at Reτ = 950 is studied. The computations with the
two-layer AMD–Bardina model result in a mean velocity profile that
fits the DNS results39 almost perfectly and second-order statistics
that are also remarkably well predicted. In this case, the two-layer

AMD–Bardina model proves to be the best model for both the first-
and second-order statistics.

The simultaneous analysis of all channel flows computed here
indicates that the full potential of the two-layer AMD–Bardina
model is best exploited for wall-bounded flows at moderate to high
Reynolds numbers. Particularly for the channel flow at Reτ = 180,
the results were not as good as for the channel flows at higher
Reynolds numbers, and the differences between the results obtained
with both mixed models are smaller. This behavior may be explained
by the fact that near solid boundaries, turbulent structures at high
Reynolds numbers differ significantly from the turbulent structures
present at low Reynolds numbers.38,42,43 At low Reynolds numbers,
fluid from the inner region of one channel wall can, for instance,
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FIG. 14. (a) Mean velocity profile and (b) streamwise, (c) wall-normal, (d) spanwise, and (e) Reynolds shear stresses considering the contribution of the model for a turbulent
channel flow at Reτ = 950. Results are presented for simulations without a subgrid-scale model (no-model simulation), with the AMD model (cAMD = 0.3), with the Bardina
model (cB = 1.0), with the single-layer AMD–Bardina model (cAMD = 0.2 and cB = 1.0), and with the two-layer AMD–Bardina model (cAMD = 0.5 in the near-wall region and
cB = 0.6 in the whole domain). DNS results of Hoyas and Jimenéz39 (HJ) are depicted for reference.

penetrate the opposite channel half,42 generating complex interac-
tion of turbulent structures that the mixed models might not be able
to accurately represent.

V. CONCLUSIONS
We have developed a mathematical basis for mixing eddy-

viscosity models with scale-similarity models. The developed
methodology has been applied, and the (single-layer) AMD–Bardina
model has been obtained. This model combines the dissipative prop-
erties of the AMD model24 with the abilities of the Bardina model4

to account for the interactions of turbulent structures as well as the
backward energy cascade.

In the case of wall-bounded turbulence, we have also intro-
duced a domain division approach in order to obtain a mixed model
that respects the physics of boundary layers. With this methodology,
we have obtained the two-layer AMD–Bardina model. This two-
layer mixed model applies the AMD–Bardina model in the near-wall
region since it introduces enough dissipation while accounting for
the interaction between turbulent structures and the Bardina model
in the outer layer as a relatively little energy is dissipated in this
region.

The model parameters for the single-layer and two-layer
AMD–Bardina models have been thoroughly investigated, and the
optimal values for the model constants have been determined
for both approaches: cAMD = 0.2 and cB = 1.0 for the single-layer
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AMD–Bardina model, and cAMD = 0.5 in the near-wall region and
cB = 0.6 in the whole flow domain for the two-layer AMD–Bardina
model. For the two-layer approach, a hyperbolic tangent smoothing
function is applied in order to smoothly turn off the AMD model
and avoid a jump in the statistics at the matching position. The
parameters of the smoothing function have been fixed in relation
to the interface location yint: the smoothing center sc is fixed at the
interface location (sc = yint), whereas the smoothing factor s f is fixed
at s f = 0.7yint. The interface location of the two-layered approach
has been treated as a model parameter, and its optimal range of
values has been determined. We have indicated that the matching
line must be located in the log-law region of the boundary layer
to represent the physical phenomena that govern this region. We
have also defined a rule of thumb: the interface must be located
in the interval R pl, +

12 < y+int ≤ 1.5 R pl, +
12 in order to ensure that all

peaks of the Reynolds stresses are computed with the AMD–Bardina
model. Here, R pl, +

12 is the peak location of the Reynolds shear
stresses.

The single-layer and two-layer AMD–Bardina models have
been tested for turbulent channel flows at various Reynolds num-
bers. The predictions of the single-layer AMD–Bardina model for
a turbulent channel flow at Reτ = 590 have been compared with
those of the AMD and Bardina models alone as well as with a no-
model simulation and the DNS data of Moser et al.38 The single-
layer AMD–Bardina model increases the accuracy of the results
compared to the non-mixed models. This mixed model is, how-
ever, not able to capture the inflection of the mean velocity in the
channel center. This deficiency of the single-layer AMD–Bardina
model has been solved by the application of the two-layer approach.
For moderate to high Reynolds numbers, the mean velocity profiles
computed with the two-layer AMD–Bardina model match almost
perfectly with the DNS results.38,39 The two-layer AMD–Bardina
model is, then, capable of capturing the inflection of the first-
order statistics in the outer region while accurately predicting the
second-order statistics. For low Reynolds numbers, however, the
two-layer AMD–Bardina model behaves similarly to the single-
layer AMD–Bardina model. This might be caused by complex low
Reynolds number effects38,42,43 that are not accounted for by the
mixed model. The full potential of the two-layer AMD–Bardina
model, thus, is best exploited if it is applied to wall-bounded flows at
moderate or high Reynolds numbers. The two-layer AMD–Bardina
model is particularly promising compared to other LES models since
it predicts the flow remarkably well while having a low complexity
level.

A natural progression of this work is the analysis of the effects
of mixing the AMD24 and Bardina4 models on the prediction of
the interaction between subgrid and resolved modes. This evalu-
ation could be performed by comparing the energy spectra near
the cutoff wavelength obtained with the mixed models, as well
as with the AMD24 and Bardina4 models. Further research could
also explore the dynamic computation of the model coefficients of
the AMD and Bardina model parts. Such future works could pro-
vide a better insight into how well the interactions between turbu-
lent structures are approximated and could lead to more optimal
model coefficients than provided here. Hence, the model would
become more sensitive to the local state of the flow, resulting in
more accurate predictions than when the coefficients are specified
a priori.
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