20,434 research outputs found

    Constraining Galactic dark matter with gamma-ray pixel counts statistics

    Get PDF
    Gamma-ray searches for new physics such as dark matter are often driven by investigating the composition of the extragalactic gamma-ray background (EGB). Classic approaches to EGB decomposition manifest in resolving individual point sources and dissecting the intensity spectrum of the remaining unresolved component. Furthermore, statistical methods have recently been proven to outperform the sensitivity of classic source detection algorithms in finding point-source populations in the unresolved flux regime. In this article, we employ the 1-point photon count statistics of eight years of Fermi-LAT data to resolve the population of extragalactic point sources and to decompose the diffuse isotropic background contribution for Galactic latitudes |b|>30 deg. We use three adjacent energy bins between 1 and 10 GeV. For the first time, we extend the analysis to incorporate a potential contribution from annihilating dark matter smoothly distributed in the Galaxy. We investigate the sensitivity reach of 1-point statistics for constraining the thermally-averaged self-annihilation cross section of dark matter, using different template models for the Galactic foreground emission. Given the official Fermi-LAT interstellar emission model, we set upper bounds on the DM self-annihilation cross section that are comparable with the constraints obtained by other indirect detection methods, in particular by the stacking analysis of several dwarf spheroidal galaxies.Comment: 11 pages, 7 figures, 1 table; v2: major changes improving the selection of the RO

    Binary black hole mergers from field triples: properties, rates and the impact of stellar evolution

    Get PDF
    We consider the formation of binary black hole mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a black hole binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov-Kozai cycles) with stellar evolution. After a black hole triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most black hole mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a black hole merger rate in the range (0.3- 1.3) Gpc^{-3}yr^{-1}, or up to ~2.5Gpc^{-3}yr^{-1} if the black hole orbital planes have initially random orientation. Finally, we show that black hole mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ~10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.Comment: Accepted for publication in ApJ. 10 pages, 6 figure

    Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films

    Get PDF
    We report first-principle atomistic simulations on the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3_3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90∘^\circ domain loops, whereas thicker ones develop, in addition, 180∘^\circ domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90∘^\circ domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180∘^\circ domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.Comment: 9 pages, 6 figure

    A general multivariate latent growth model with applications in student careers Data warehouses

    Full text link
    The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context the analysis of student performance and capabilities plays a fundamental role. In this work we propose a multivariate latent growth model for studying the performances of a cohort of students of the University of Bologna. The model proposed is innovative since it is composed by: (1) multivariate growth models that allow to capture the different dynamics of student performance indicators over time and (2) a factor model that allows to measure the general latent student capability. The flexibility of the model proposed allows its applications in several fields such as socio-economic settings in which personal behaviours are studied by using panel data.Comment: 20 page

    Light-like Wilson loops in ABJM and maximal transcendentality

    Get PDF
    We revisit the computation of the two-loop light-like tetragonal Wilson loop for three dimensional pure Chern-Simons and N=6 Chern-Simons-matter theory, within dimensional regularization with dimensional reduction scheme. Our examination shows that, contrary to prior belief, the result respects maximal transcendentality as is the case of the four-point scattering amplitude of the theory. Remarkably, the corrected result matches exactly the scattering amplitude both in the divergent and in the finite parts, constants included.Comment: 11 page

    The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details

    Get PDF
    We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framing-one expressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation.Comment: 54 pages, 2 figure

    Magnon heralding in cavity optomagnonics

    Full text link
    In the emerging field of cavity optomagnonics, photons are coupled coherently to magnons in solid-state systems. These new systems are promising for implementing hybrid quantum technologies. Being able to prepare Fock states in such platforms is an essential step towards the implementation of quantum information schemes. We propose a magnon-heralding protocol to generate a magnon Fock state by detecting an optical cavity photon. Due to the peculiarities of the optomagnonic coupling, the protocol involves two distinct cavity photon modes. Solving the quantum Langevin equations of the coupled system, we show that the temporal scale of the heralding is governed by the magnon-photon cooperativity and derive the requirements for generating high fidelity magnon Fock states. We show that the nonclassical character of the heralded state, which is imprinted in the autocorrelation of an optical "read" mode, is only limited by the magnon lifetime for small enough temperatures. We address the detrimental effects of nonvacuum initial states, showing that high fidelity Fock states can be achieved by actively cooling the system prior to the protocol.Comment: 17 pages, 14 figures. Correction of typos, version as publishe

    BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Get PDF
    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the framing dependence and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.Comment: 46 pages, 6 figures; references adde

    A matrix model for the latitude Wilson loop in ABJM theory

    Get PDF
    In ABJ(M) theory, we propose a matrix model for the exact evaluation of BPS Wilson loops on a latitude circular contour, so providing a new weak-strong interpolation tool. Intriguingly, the matrix model turns out to be a particular case of that computing torus knot invariants in U(N1∣N2)U(N_1|N_2) Chern-Simons theory. At weak coupling we check our proposal against a three-loop computation, performed for generic framing, winding number and representation. The matrix model is amenable of a Fermi gas formulation, which we use to systematically compute the strong coupling and genus expansions. For the fermionic Wilson loop the leading planar behavior agrees with a previous string theory prediction. For the bosonic operator our result provides a clue for finding the corresponding string dual configuration. Our matrix model is consistent with recent proposals for computing Bremsstrahlung functions exactly in terms of latitude Wilson loops. As a by-product, we extend the conjecture for the exact B1/6θB^{\theta}_{1/6} Bremsstrahlung function to generic representations and test it with a four-loop perturbative computation. Finally, we propose an exact prediction for B1/2B_{1/2} at unequal gauge group ranks.Comment: 73 pages; v2: several improvements, JHEP published versio
    • …
    corecore