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Abstract: In ABJ(M) theory, we propose a matrix model for the exact evaluation of BPS

Wilson loops on a latitude circular contour, so providing a new weak-strong interpolation

tool. Intriguingly, the matrix model turns out to be a particular case of that computing

torus knot invariants in U(N1|N2) Chern-Simons theory. At weak coupling we check our

proposal against a three-loop computation, performed for generic framing, winding number

and representation. The matrix model is amenable of a Fermi gas formulation, which we

use to systematically compute the strong coupling and genus expansions. For the fermionic

Wilson loop the leading planar behavior agrees with a previous string theory prediction.

For the bosonic operator our result provides a clue for finding the corresponding string

dual configuration. Our matrix model is consistent with recent proposals for computing

Bremsstrahlung functions exactly in terms of latitude Wilson loops. As a by-product, we

extend the conjecture for the exact Bθ
1/6 Bremsstrahlung function to generic representa-

tions and test it with a four-loop perturbative computation. Finally, we propose an exact

prediction for B1/2 at unequal gauge group ranks.
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1 Introduction and conclusions

1.1 Generalities

Wilson loop operators are fundamental observables in any gauge theory. While in the case

of pure Yang-Mills in two dimensions a complete solution for their vacuum expectations

value exists [1, 2], in higher dimensions only few examples of non-perturbative calculations

can be found in literature. A notable exception is provided by ordinary Wilson loops in

pure three-dimensional Chern-Simons theory [3], where the computation is made possible

thanks to the topological nature of the model.

A more significant class of examples is represented by the so-called supersymmet-

ric/BPS Wilson loops, appearing quite ubiquitously in gauge theories with extended su-

persymmetry. Their main property consists in preserving a fraction of the supersymmetry

charges, depending on the shape of the contour and on the couplings to the different fields

appearing in the Lagrangian. Despite their BPS nature, the dependence of their vacuum

expectation values on the coupling constant is generically non-trivial and interpolates be-

tween the weak and strong coupling regimes, thus providing a natural playground where

to test the AdS/CFT correspondence and other non-perturbative methods.

In recent years the technique of supersymmetric localization (for recent reviews, see [4]

and references therein) has allowed for the calculation of a large variety of BPS Wilson

loops, in different theories and various dimensions [5–12]. Localization often reduces the

computation of these observables to the average of suitable matrix operators, in terms of

particular matrix integrals. These integrals can then be solved by applying the power-

ful machinery developed along the years, as for example large N expansion, orthogonal

polynomials, loop equations, recursion relations.

In this paper we discuss a new example of such matrix model computations of Wilson

loops. We focus on three-dimensional N = 6 superconformal U(N1)×U(N2) Chern-Simons

theory with matter, also known as the ABJ(M) model [13, 14], that can be viewed as an

extended supersymmetric generalization of the familiar topological Chern-Simons theory.

We propose a matrix model for calculating the exact quantum expectation value of certain

1/12- and 1/6-BPS Wilson loop operators, briefly referred to as bosonic and fermionic

latitudes and parameterized by a real number ν ∈ [0, 1] [15]. For ν = 1 we recover the

supersymmetric Wilson loops on the great circle [9, 16–19], for which a precise localization

procedure has been derived in [8], leading to the ABJ(M) matrix model. Various aspects

of such circular Wilson loops have been thoroughly studied in [20, 21].

For generic ν we do not possess a direct derivation of our matrix model from supersym-

metric localization, since these loop operators preserve supercharges that are different from

the ones used in [8], and cannot be embedded in a natural way in the N = 2 superspace

language employed there for the localization procedure. Rather, we formulate an ansatz

for the matrix integral from symmetry considerations and show its non-trivial consistency

with a three-loop perturbative calculation of the same observables. At equal gauge group

ranks, we also prove that, without the operator insertion, the matrix model reproduces

the ABJM partition function. This fact supports a possible interpretation of our matrix

model as the result of localizing with the ν-dependent supercharge preserved by latitude

operators. Encouraged by this fact, we perform a strong coupling analysis using the Fermi
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gas approach. In the fermionic case we obtain an important agreement with the existing

string theory computation [22]. Instead, in the case of unequal ranks, N1 6= N2, we find

a residual ν-dependence in the matrix model partition function. This would in principle

prevent us form directly interpreting it as the result of localizing the ABJ theory on the

sphere. Still, such a dependence is confined to a simple phase factor, which might stem

from a framing anomaly. Therefore, the latter case requires a deeper analysis.

Latitude Wilson loops are important in order to study non-BPS observables, the

Bremsstrahlung functions [15, 23]. These are functions of the coupling constant, controlling

the small angle limit of the anomalous dimension of a generalized cusp, constructed from

supersymmetric Wilson lines. In particular, depending on the degree of supersymmetry,

the various Bremsstrahlung functions can be obtained taking a suitable derivative of the

latitude with respect to the ν parameter, at ν = 1 [15, 22, 23]. The fermionic and bosonic

latitudes satisfy a cohomological equivalence [15]. Using the latter and under a suitable

assumption (automatically satisfied by our matrix integral), remarkable relations can be

derived for the different Bremsstrahlung functions at equal ranks N1 = N2. Eventually,

they are all related among themselves and expressible only in terms of the phase of the

undeformed 1/6-BPS Wilson loop.

Besides the derivation and the strong coupling solution of our matrix model, the paper

provides details of the perturbative three-loop computation of the bosonic latitude Wil-

son loop, for generic representation and winding number. This general result allows for

comparisons in various limits. We also present a careful discussion of the framing depen-

dence [24] at perturbative level. In particular, the perturbative result at generic framing is

crucial for finding consistency with the prediction from our matrix model. The remarkable

output is that the agreement between the perturbative and the matrix model calculations

works upon the identification of framing with the effective parameter ν.

1.2 Summary of the results

� The main focus of the paper is on the proposal of a matrix model computing the latitude

expectation values at all orders. Based on symmetry considerations and the consistency

with the perturbative results, we conjecture that the exact expectation value of the mul-

tiply wound bosonic latitude Wilson loop in the fundamental representation is given by

〈Wm
B (ν)〉 =

〈
1

N1

∑
1≤i≤N1

e2πm
√
ν λi

〉
(1.1)

where 〈· · · 〉 stands for the normalized expectation value performed using the following

matrix integral

Z(ν) =

∫ N1∏
a=1

dλa e
iπkλ2

a

N2∏
b=1

dµb e
−iπkµ2

b (1.2)

×

N1∏
a<b

sinh
√
νπ(λa − λb) sinh

π(λa − λb)√
ν

N2∏
a<b

sinh
√
νπ(µa − µb) sinh

π(µa − µb)√
ν

N1∏
a=1

N2∏
b=1

cosh
√
νπ(λa − µb) cosh

π(λa − µb)√
ν

– 3 –
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The expression for the fermionic 1/6-BPS latitude Wilson loop is obtained by comput-

ing a suitable linear combination of bosonic latitudes, as suggested by the cohomological

equivalence discussed in [15] and reviewed in section 2.

We also conjecture that the expectation values of latitude Wilson loops in higher dimen-

sional representations can be obtained from this matrix model by the same generalization

of the operator insertions as in the undeformed (ν = 1) case.

A crucial point for the consistency of the above proposal is that for N1 = N2 the partition

function Z(ν) defined in (1.2) is independent of the ν parameter and coincides with the

usual partition function of ABJM on S3. This important property is proved explicitly

in section 4.2. The ABJ case (i.e. N1 6= N2) is subtler but still the full dependence on ν

is confined to a simple phase factor (see section 4.2). This points towards the possibility

that a localization procedure performed with one of the ν-dependent supersymmetric

charges preserved by the latitude could produce the above matrix integral.

� Supported by this first evidence on the correctness of our proposal, in section 5 we per-

form a careful analysis of the large N , strong coupling limit, of the expectation values of

the bosonic and fermionic latitudes, as defined through our conjectured matrix model.

We perform a Fermi gas analysis along the lines of [25] and obtain an explicit result re-

summing the genus expansions both in the 1/12-BPS and 1/6-BPS cases. In particular,

for the fermionic loop we obtain

〈WF (ν)〉ν = −
ν Γ
(
−ν

2

)
csc
(

2πν
k

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

))
2ν+2

√
π Γ
(

3−ν
2

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
1
3k

)) (1.3)

From this expression we can read the leading genus-zero term that consistently coincides

with the semi-classical string computation of the 1/6-BPS loop performed in [22]. Re-

covering the string result is non-trivial and depends on a delicate cancellation of various

contributions appearing in the intermediate steps of the calculation.

� The matrix model proposal must also be consistent with explicit weak-coupling calcu-

lations. Therefore, we have performed a perturbative three-loop computation of the

bosonic latitude, at generic framing f , representation R and winding number m. This

Feynman diagram tour de force agrees with the third-order expansion of (1.1), provided

the framing number is formally identified with ν. The agreement holds for generic wind-

ing and, in addition, we have explicitly verified the consistency of our matrix model

proposal with the perturbative result for a few higher dimensional representations of the

gauge group. The requirement of a specific choice of framing does not come as a surprise,

in fact localization for Wilson loops on the great circle in ABJ(M) theory produces results

at non-trivial framing (see [8]). Hence, it is reasonable to expect that our matrix model

computation also yields results at a fixed framing number. The particular choice f = ν

is natural, as it corresponds to the value at which the bosonic and fermionic latitude

expectation values are related by the cohomological equivalence at the quantum level,

as pointed out in [15]. This requires an analytic continuation of the framing parameter

from an integer to a real number, which is perfectly legitimate at the matrix model level.
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� We discuss the different Bremsstrahlung functions that can be defined in ABJ(M) the-

ories, and in particular we review how they are connected to suitable derivatives of the

modulus of the latitude expectation value. The introduction of the modulus slightly

modifies the prescription considered previously [15, 22, 23], allowing to eliminate some

unexpected imaginary contributions to the Bremsstrahlung functions, appearing at three

loops from the perturbative expansion of the latitudes at framing zero. The origin of

these imaginary terms is quite peculiar and is rooted into an anomalous behavior of

some correlation function of scalar composite operators, as we discuss carefully in sub-

section 3.4. Once we take into account this effect, it is straightforward to understand

why the correct prescription for the Bremsstrahlung functions must contain the modulus,

analogously to what was originally argued in [26]. We test the matrix model based ex-

pression for the Bremsstrahlung function associated to the internal angle of the bosonic

cusp, Bθ
1/6, against its four-loop perturbative computation for a generic representation,

which is presented in (2.30).

� In the case of the ABJM theories, the following relation,

∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

) ∣∣∣
ν=1

= 0 for N1 = N2, (1.4)

was originally conjectured in [15] and is at the core of the relation between Wilson loops

and Bremsstrahlung functions proposed there. This identity holds for the bosonic lati-

tudes WB(ν), ŴB(ν) with gauge group U(N)k ×U(N)−k evaluated at framing ν, where

ŴB(ν) is the Wilson loop associated to the second gauge group. It is related to the

first one by complex conjugation. Equation (1.4) entails that the two Bremsstrahlung

functions associated to the bosonic cusp and to the 1/2-BPS line can be expressed only

in terms of the phase ΦB(ν) of the bosonic latitude

B1/2 =
1

8π
tan ΦB(1) Bϕ

1/6 = 2Bθ
1/6 = − 1

2π2
∂ν log(cos ΦB(ν))

∣∣∣
ν=1

(1.5)

where we have defined 〈WB(ν)〉ν = eiΦB(ν)|〈WB(ν)〉ν |. We explicitly check that (1.4) is

obeyed by our three-loop perturbative result and, remarkably, it is an exact consequence

of the proposed matrix model. In fact we prove that more generally our matrix model

satisfies this identity not only at ν = 1 but for any value of ν. We also reproduce the

three-loop result of [27] for the fermionic cusp anomalous dimension in the near-BPS

regime. This chain of relations among the different Bremsstrahlung functions is also

discussed in [28].

� Finally, we briefly discuss a possible generalization of our approach for computing the

fermionic Bremsstrahlung function from the 1/6-BPS fermionic latitude in the N1 6= N2

case. We put forward an exact prediction for B1/2, whose expansion up to five loops is

provided explicitly in (6.2). This result calls for future perturbative confirmation.

The paper is structured in the following way. We start in section 2 by reviewing

the construction of two general families of circular Wilson loops, whose contours are the

latitudes on a sphere S2. The two families, bosonic and fermionic latitudes, differ by

– 5 –
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the nature of the connection appearing in the holonomy and the number of preserved

supercharges. We discuss the framing dependence of Wilson loops expectation values,

the cohomological relation between bosonic and fermionic latitudes and the connections

among the different Bremsstrahlung functions, associated to fermionic and bosonic cusps.

Subsequently, section 3 illustrates the three-loop perturbative calculation of the bosonic

latitude in the general situation described before. In particular, we elucidate the emergence

of an imaginary term at framing zero at three loops and the requirement of considering

the modulus of the latitude expectation value in computing the Bremsstrahlung function.

Section 4 and section 5 are the heart of the paper: here we propose our matrix model and

study its main properties by using the Fermi gas technique. The strong coupling expansion

is performed and successfully compared, in the 1/6-BPS fermionic case, with the semi-

classical string computation. In section 6 we briefly present and discuss a conjectured form

of the fermionic Bremsstrahlung function for N1 6= N2, providing a prediction up to five

loops. Six appendices complete the paper with conventions, details of the computation and

further checks of our results.

2 BPS Wilson loops, cusps and Bremsstrahlung functions: a review

We begin with a general review of the most fundamental properties of circular BPS Wilson

loops in ABJ(M) theories and their non-trivial connections with cusped Wilson lines and

the corresponding Bremsstrahlung functions.

In U(N1)k × U(N2)−k ABJ(M) theory we consider the general class of Wilson loops

that preserve a certain fraction of the original N = 6 supersymmetry.1 Such operators can

be constructed by generalizing the ordinary gauge holonomy with the addition of either

scalar matter bilinears (“bosonic” Wilson loops) [16–19] or scalar bilinears and fermions

(“fermionic” Wilson loops) [9]. For the case of straight line and maximal circular contours a

general classification of such BPS operators based on the amount of preserved supercharges

can be found in [10, 11, 29].

Latitude Wilson loops. We are primarily interested in the general class of bosonic

and fermionic Wilson operators introduced in [30] (latitude Wilson loops). They feature a

parametric dependence on a α-angle2 that governs the couplings to matter in the internal

R-symmetry space and a geometric angle θ0 ∈ [−π
2 ,

π
2 ] that fixes the contour to be a latitude

circle on the unit sphere

Γm : xµ = (sin θ0, cos θ0 cos τ, cos θ0 sin τ) τ ∈ [0, 2mπ) for winding m (2.1)

Note that here we are generalizing the definitions of [30] to Wilson loops with generic

winding. As discussed in [15], these operators can be constructed in such a way that they

depend uniquely on the effective “latitude parameter”

ν ≡ sin 2α cos θ0 0 ≤ ν ≤ 1 (2.2)

1For a brief summary of our conventions for ABJ(M) theories we refer to appendix A.
2The α-angle can be freely chosen in the interval [0, π

2
], see [30].

– 6 –
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The m-winding bosonic latitude Wilson loops corresponding to the two gauge groups are

explicitly given by

Wm
B (ν,R) =

1

dim(R)
TrR P exp

{
−i
∮

Γm

dτ

(
Aµẋ

µ − 2πi

k
|ẋ|M I

J CIC̄
J

)}
Ŵm
B (ν, R̂) =

1

dim(R̂)
TrR̂ P exp

{
−i
∮

Γm

dτ

(
Âµẋ

µ − 2πi

k
|ẋ|M I

J C̄JCI

)}
(2.3)

where the matrix describing the coupling to the (CI , C̄
I) scalars reads

M I
J =


−ν e−iτ

√
1− ν2 0 0

eiτ
√

1− ν2 ν 0 0

0 0 −1 0

0 0 0 1

 (2.4)

The traces in (2.3) are taken over generic representations R, R̂ of U(N1) and U(N2), re-

spectively. The overall constants have been purposely chosen in order to normalize the tree

level expectation values 〈Wm
B 〉(0) and 〈Ŵm

B 〉(0) to one.

Similarly, the m-winding fermionic latitude Wilson loop for a generic representation

R of the superalgebra U(N1|N2) is defined as

Wm
F (ν,R) = R STrR

[
P exp

(
−i
∮

Γm

L(τ)dτ

)(
e−

iπmν
2 1N1 0

0 e
iπmν

2 1N2

)]
(2.5)

where L is the U(N1|N2) superconnection

L=

 A i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I Â

 with


A≡Aµẋµ− 2πi

k |ẋ|M
I

J CIC̄
J

Â≡ Âµẋµ− 2πi
k |ẋ|M

I
J C̄JCI

(2.6)

and

M J
I =


−ν e−iτ

√
1− ν2 0 0

eiτ
√

1− ν2 ν 0 0

0 0 1 0

0 0 0 1

 , ηαI ≡ nIηα = e
iντ
2√
2


√

1 + ν

−
√

1− νeiτ
0

0


I

(1,−ie−iτ )α

η̄Iα ≡ n̄I η̄α = i(ηαI )† (2.7)

The generalized prescription (2.5) that requires taking the supertrace of the superholonomy

times a constant matrix assures invariance under super gauge transformations [30]. The

overall constant in (2.5) can be chosen so as to normalize the expectation value to 1, if

possible. In the rest of the paper we consider the fermionic operator only in the fundamental

representation, for which

R =
1

N1 e
− iπmν

2 − N2 e
iπmν

2

(2.8)

We note that for N1 = N2, if ν = 1 (ν = 0) and m is even (odd) this normalization becomes

meaningless. In those cases one can simply compute the unnormalized expectation value,

choosing R = 1.

– 7 –
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Whenever no confusion arises we will use WB,F as a shorthand for the single winding

operators W 1
B,F . Moreover, if no explicit dependence on the representation is displayed,

the Wilson loop is understood to be in the fundamental representation.

For generic values of the parameters, the latitude bosonic operators in (2.3) preserve

1/12 of the original N = 6 supercharges, whereas the fermionic one in (2.5) is 1/6-BPS.

The supersymmetry (θIJα ) and superconformal (εIJα ) charges preserved by the fermionic

latitude can be expressed in terms of four constant spinor parameters ωi as [15]

θ̄13
1 = e−

iθ0
2

√
1− ν ω1 + e

iθ0
2

√
1 + ν ω2 θ̄14

1 = e−
iθ0
2

√
1− ν ω3 + e

iθ0
2

√
1 + ν ω4

θ̄23
2 = −ie−

iθ0
2

√
1 + ν ω1 − ie

iθ0
2

√
1− ν ω2 θ̄24

2 = −ie−
iθ0
2

√
1 + ν ω3 − ie

iθ0
2

√
1− ν ω4

ε̄13
1 = ie

iθ0
2

√
1− ν ω1 − ie−

iθ0
2

√
1 + ν ω2 ε̄14

1 = ie
iθ0
2

√
1− ν ω3 − ie−

iθ0
2

√
1 + ν ω4

ε̄23
2 = e−

iθ0
2

√
1− ν ω2 − e

iθ0
2

√
1 + ν ω1 ε̄24

2 = e−
iθ0
2

√
1− ν ω4 − e

iθ0
2

√
1 + ν ω3 (2.9)

The supercharges preserved by the bosonic latitude can be obtained by setting ω1 = ω4 = 0.

We note that in both cases the preserved supercharges carry a non-trivial dependence on

the parameter ν.

Enhancement of preserved supersymmetry occurs at ν = 1, where WB(1) coincides

with the bosonic 1/6-BPS operator introduced in [17–19] and the fermionic WF (1) is the

1/2-BPS operator studied in [9].

At classical level the fermionic latitude Wilson loop (2.5) is cohomologically equivalent

to the following linear combination of bosonic latitudes

Wm
F (ν) = R

[
N1 e

− iπmν
2 Wm

B (ν)−N2 e
iπmν

2 Ŵm
B (ν)

]
+Q(ν)(something) (2.10)

where for simplicity we have restricted to Wilson loops in the fundamental representation.

In the above formula Q(ν) is the linear combination of superpoincaré and superconformal

charges [15]

Q(ν) = −
√

1 + ν

2

(
e
iθ0
2 Q13,1 − ie−

iθ0
2 S13,1 + e−

iθ0
2 Q24,2 − ie

iθ0
2 S24,2

)
+ i

√
1− ν

2

(
e
iθ0
2 Q23,2 + ie−

iθ0
2 S23,2 − e−

iθ0
2 Q14,1 − ie

iθ0
2 S14,1

) (2.11)

preserved by both bosonic and fermionic Wilson loops.

If this equivalence survives at quantum level it allows to compute the vacuum ex-

pectation value 〈WF (ν)〉 of the fermionic operator as a combination of the bosonic ones.

However, in three dimensions the problem of understanding how the classical cohomological

equivalence gets implemented at quantum level is strictly interconnected with the problem

of understanding framing, as we review below.

Matrix models for BPS Wilson loops. Using the procedure of supersymmetric lo-

calization the ABJ(M) partition function on the three-sphere can be reduced to the matrix
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model integral [8]

Z =

∫ N1∏
a=1

dλa e
iπkλ2

a

N2∏
b=1

dµb e
−iπkµ2

b

N1∏
a<b

sinh2 π(λa − λb)
N2∏
a<b

sinh2 π(µa − µb)

N1∏
a=1

N2∏
b=1

cosh2 π(λa − µb)

(2.12)

where we are being cavalier on the precise normalization, which is unimportant for the

computation of Wilson loops. At ν = 1 the expectation values of the 1/6- and 1/2-BPS

Wilson loops can be computed as matrix model averages. In particular, the m-winding

bosonic 1/6-BPS Wilson loop in the fundamental representation3 is given by

〈Wm
B (1)〉 =

1

N1

〈
N1∑
i=1

e2πmλi

〉
, 〈Ŵm

B (1)〉 =
1

N2

〈
N2∑
i=1

e2πmµi

〉
(2.13)

where the right-hand-side brackets stand for the integration using the matrix model mea-

sure defined in (2.12), normalized by the partition function. In this language, the 1/2-BPS

Wilson loop can be computed as the average of a supermatrix operator, or equivalently

using (2.10) [9].

For generic ν, no matrix model prescription has been found so far. In fact, even

though the latitude Wilson loops are BPS operators, in this case the standard localization

arguments of [8] cannot be directly applied [15]. We aim at filling this gap in section 4,

where we conjecture a matrix model for the latitude Wilson loops that turns out to be

compatible with all the available data points at weak and strong coupling.

Framing. In three-dimensional Chern-Simons theories the computation of Wilson loop

expectation values is affected by finite regularization ambiguities associated to singular-

ities arising when two fields running on the same closed contour clash. In perturbation

theory, this phenomenon is ascribable to the use of point-splitting regularization to define

propagators at coincident points. For ordinary Wilson loops, following e.g. the prescription

of [31], one allows one endpoint of the gluon propagator to run on the original closed path

Γ on which the Wilson loop is evaluated, and the other to run on a framing contour Γf .

This is infinitesimally displaced from Γ and defined by the choice of a vector field on it.

Then the one-loop Chern-Simons contribution is proportional to the Gauss linking integral

1

4π

∮
Γ
dxµ

∮
Γf

dyν εµνρ
(x− y)ρ

|x− y|3
≡ f (2.14)

which evaluates to an integer f (the framing number). This is a topological invariant that

counts the number of times the additional closed contour Γf introduced by the framing

procedure winds around the original one Γ.

This phenomenon has been first discovered and extensively discussed for pure U(N)

Chern-Simons theory [3], in connection to knot theory. In this case, the total effect of

3The prescription can be generalized to higher dimensional representations.
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framing amounts to a phase, exponentiating the one-loop result (from now on we use the

subscript on the expectation value to indicate a certain choice of framing)

〈WCS〉f = eiπλ f 〈WCS〉0 (2.15)

where λ is the ’t Hooft Chern-Simons coupling shifted by the quadratic Casimir of the

gauge group.

More recently, the same kind of framing dependence has been discussed also for non-

topological Chern-Simons theories coupled to matter, in particular ABJ(M) theories [24,

32]. In order to review framing effects in this context it is convenient to split the Wilson

loop expectation value into its phase and its modulus. For the most general case of m-

winding operators with a non-trivial latitude we set

〈Wm
B (ν)〉f = eiΦB(f,m,ν)

∣∣∣ 〈Wm
B (ν)〉f

∣∣∣ , 〈Ŵm
B (ν)〉f = eiΦ̂B(f,m,ν)

∣∣∣ 〈Ŵm
B (ν)〉f

∣∣∣ (2.16)

and similarly for Wm
F (ν).

In the ν = 1 case, the bosonic 1/6-BPS operators have been computed up to three

loops in the large N1, N2 limit, for generic framing number and winding m [24, 33]. As an

effect of framing, their expectation values acquire imaginary contributions at odd orders, as

well as additional real corrections at even orders. We stress that in this case the imaginary

contributions are entirely due to framing.

For single winding the framing contributions can be still captured by a phase, precisely

ΦB(f, 1, 1), Φ̂B(f, 1, 1) in (2.16), while the expectation values at framing zero are real quan-

tities and coincide with the modulus. However, the phases are no longer a one-loop effect

as in the pure Chern-Simons theory, but display non-trivial quantum corrections starting

at three loops [24]

ΦB(f, 1, 1) = π
N1

k
f − π

3

2

N1N
2
2

k3
f +O(k−5) , Φ̂B(f, 1, 1) = −πN2

k
f +

π3

2

N2
1N2

k3
f +O(k−5)

(2.17)

For multiple windings the effect of framing is more complicated and ceases to be

encapsulated into a phase [33]. This does not come as a surprise since the same pattern

occurs also in the pure Chern-Simons theory.

For latitude Wilson loops the phases ΦB, Φ̂B will depend in general on the framing and

winding numbers, and the latitude parameter ν as well. According to the discussion above,

they will be non-trivial functions of the couplings that reduce to the expansions (2.17)

for ν = 1 and single winding. Having in mind the most general scenario, we may expect

them not to necessarily account for all the framing effects (as in the multiple winding

situation). Hence, in general the modulus in (2.16) does not coincide with the expectation

value at framing zero. Moreover, for latitude operators the phase might not even be entirely

produced by framing, as further framing independent imaginary contributions could arise.

Checking if this is the case and better understanding the framing origin of ΦB, Φ̂B is one

of the goals of this paper.

We conclude this short review on framing by discussing its role in localization. It was

argued in [8] that the matrix model (2.12) derived from localization computes the 1/6-
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and 1/2-BPS Wilson loops at framing one. This is because a point-splitting regularization,

implied in the derivation, is compatible with supersymmetry only if the circular path and

the framing contour are two Hopf fibers in the S1 fibration of the three-sphere. These in

turn have linking number one, which explains the particular framing number arising in this

computation. The aforementioned studies on supersymmetric Wilson loops have provided

a perturbative test of such an argument.

For the purposes of this paper we therefore stress that a matrix model computing

the expectation value of latitude Wilson loops is expected to imply a particular choice of

framing.

Cohomological equivalence and non-integer framing. As stated above, at classical

level the fermionic and bosonic latitude Wilson loop operators are related by the cohomo-

logical equivalence (2.10). If relation (2.10) survives at the quantum level, then 〈WF (ν)〉
can be obtained as a linear combination of 〈WB(ν)〉 and 〈ŴB(ν)〉. In particular, we expect

that to be the case (namely no anomalies arise) in the localization approach, if the func-

tional integral computing the Wilson loop expectation value is localized using its invariance

under the same supercharge Q in (2.10).

For ν = 1 this reduces to the cohomological equivalence first discovered in [9]. In this

case the localization computation is performed at framing 1, as recalled above, hence the

equivalence is expected to hold for this particular choice of framing (in this section we

restrict to the fundamental representation and set m = 1 for simplicity)

〈WF (1)〉1 = R
(
N1 〈WB(1)〉1 −N2 〈ŴB(1)〉1

)
(2.18)

but could be modified if another choice of framing is taken. In fact, this has been explic-

itly verified in ordinary perturbation theory at framing zero up to two loops, where the

equivalent of (2.18) with f = 0 fails.

On the other hand, from equation (2.17) it follows that up to two loops framing zero

and one expectation values of bosonic 1/6-BPS Wilson loops are related as

〈WB(1)〉1 ≡ eiπ
N1
k 〈WB(1)〉0 +O(k−3) , 〈ŴB(1)〉1 ≡ e−iπ

N2
k 〈ŴB(1)〉0 +O(k−3) (2.19)

Using this, and further defining

〈WF (1)〉1 ≡ eiπ
N1−N2

k 〈WF (1)〉0 +O(k−3) (2.20)

identity (2.18) has been confirmed to hold, perturbatively [34–36].

In the latitude case, the analogous two-loop calculation [15] shows that the cohomo-

logical equivalence survives at quantum level in the form

〈WF (ν)〉ν = R
[
N1 e

− iπν
2 〈WB(ν)〉ν − N2 e

iπν
2 〈ŴB(ν)〉ν

]
(2.21)

if we define

〈WB(ν)〉ν ≡ eiπ
N1
k
ν 〈WB(ν)〉0 +O(k−3) , 〈ŴB(ν)〉ν ≡ e−iπ

N2
k
ν 〈ŴB(ν)〉0 +O(k−3)

〈WF (ν)〉ν ≡ eiπ
N1−N2

k
ν〈WF (ν)〉0 +O(k−3) (2.22)
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that is if we formally identify the framing number f with the latitude parameter ν. There-

fore, in the general case, we allow the latitude to be evaluated at non-integer framing

ν. Moreover, we expect that a matrix model computation of the latitude Wilson loop,

respecting the cohomological equivalence at the quantum level, would imply framing ν.

Bremsstrahlung functions. The Bremsstrahlung function B is the physical quantity

that measures the energy lost by a heavy quark slowly moving (|v| � 1) in a gauge

background. Generalizing the well-known law of electrodynamics, it is defined as [37]

∆E = 2πB

∫
dt(v̇)2 (2.23)

In a conformal field theory it also appears as the coefficient of the first non-trivial order

in the small angle expansion of the cusp anomalous dimension, Γcusp(ϕ) ∼ −Bϕ2, which

governs the short distance divergences of a cusped Wilson loop.

In ABJ(M) theories, since we have bosonic and fermionic Wilson loops we can define

different types of Bremsstrahlung functions [26, 38]. Computing the divergent part of

a fermionic, locally 1/2-BPS Wilson loop W∠
F along a generalized cusped contour (two

straight lines meeting at a point with a relative ϕ angle) one finds

〈W∠
F (ϕ, θ)〉 ∼ e−Γ

1/2
cusp(ϕ,θ) log Λ

ε with Γ1/2
cusp(ϕ, θ) ∼

ϕ,θ�1
B1/2(θ2 − ϕ2) (2.24)

where Λ and ε are IR and UV cutoffs, respectively. Here θ is the internal angle that describes

possible relative rotations of the matter couplings between the Wilson loops defined on the

two semi-infinite lines. B1/2 appears as a common factor in the small angles expansion

as a consequence of the fact that for θ = ϕ the fermionic cusped Wilson loop is BPS and

divergences no longer appear.

Analogously, using a bosonic 1/6-BPS Wilson loop on a cusp we can define

〈W∠
B (ϕ, θ)〉 ∼ e−Γ

1/6
cusp(ϕ,θ) log Λ

ε with Γ1/6
cusp(ϕ, θ) ∼

ϕ,θ�1
Bθ

1/6 θ
2 −Bϕ

1/6 ϕ
2 (2.25)

and similar relations for 〈Ŵ∠
B (ϕ, θ)〉 that give rise to B̂θ

1/6, B̂
ϕ
1/6 associated to the second

gauge group. In the bosonic case we have in principle two different Bremsstrahlung func-

tions since there are no BPS conditions for cusped bosonic Wilson loops.

A crucial problem consists in relating B to other physical quantities that in principle

can be computed exactly using localization techniques, like for instance circular BPS Wilson

loops. For the ABJM theory,4 this problem was originally addressed in [26], where an exact

prescription was given to compute Bϕ
1/6 in terms of a m-winding Wilson loop

Bϕ
1/6 =

1

4π2
∂m log | 〈Wm

B 〉 |
∣∣∣
m=1

(2.26)

A similar prescription has been later derived for B1/2 and Bθ
1/6 in ABJM [15, 22], in terms

of single winding, latitude fermionic (2.5) and bosonic (2.3) Wilson loops, respectively

B1/2 =
1

4π2
∂ν log | 〈WF (ν)〉 |

∣∣∣
ν=1

, Bθ
1/6 =

1

4π2
∂ν log | 〈WB(ν)〉 |

∣∣∣
ν=1

(2.27)

4We postpone to section 6 the discussion of the more general ABJ case.
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These formulae were proven in [23] and [37], respectively. We note that in order to enforce

the reality of the result we take the modulus of the expectation values.5 We derive this

prescription in section 3.4. According to the previous discussion this is also supposed to

remove framing ambiguities, henceforth the expectation values in (2.27) can be computed

at any convenient framing.

These prescriptions have already passed several tests at weak and/or strong coupling.

At weak coupling, the lowest order term of Bϕ
1/6 computed using (2.26) agrees with the

result obtained from a genuine two-loop calculation of Γ
1/6
cusp [38]. Bθ

1/6 obtained from

prescription (2.27) has been tested at weak coupling up to two loops [15] for Wilson loops

in the fundamental representation of the gauge group. B1/2 as computed via (2.27) has

been tested at weak coupling up to two loops [15, 38]. Moreover, the leading term at strong

coupling is successfully reproduced by the string dual configuration of WF (ν) found in [22].

A direct perturbative calculation of Bθ
1/6 at four loops has been performed in [39, 40],

and compared with the perturbative result for Bϕ
1/6 as obtained from prescription (2.26).

Interestingly, it has been found that the simple relation

2Bθ
1/6(k,N1, N2) = Bϕ

1/6(k,N1, N2) (2.28)

is valid up to this order and has been conjectured to be true exactly. For the ABJM

case (N1 = N2) this has been proved [28]. For the more general case, taking into account

prescriptions (2.26) and (2.27) it amounts to conjecturing that

∂ν |〈WB(ν)〉|
∣∣∣∣
ν=1

=
1

2
∂m |〈Wm

B (1)〉|
∣∣∣∣
m=1

(2.29)

We stress that this applies to generic N1 and N2 and no planar limit is assumed. In order

to provide further support, in appendix D we generalize the four-loop test to the case of

Wilson loops in generic representations. The result for the Bremsstrahlung function reads

Bθ
1/6(R) =

N2C2(R)

4k2
− π2N2

24k4

(
(N1 − 5N2)C2

1 (R) +
(
N2

2 + 5N1N2 − 2
)
C2(R)

+2N1C3(R)− 2C2(R)C1(R)− 2C4(R)) +O
(
k−6

)
(2.30)

and is in agreement with (2.27) upon using the circular Wilson loops in the appropriate

representation. We observe that the four-loop contribution exhibits an explicit dependence

on higher order Casimir invariants, thereby violating quadratic Casimir scaling, as recently

observed in related four-dimensional contexts [41, 42].

Concerning B1/2, a further point is worth mentioning separately. As discussed in [15],

in the N1 = N2 situation one can derive from the first equation in (2.27) an exact expression

in terms of 1/6-BPS winding Wilson loops

B1/2 = − i

8π

〈WB(1)〉 − 〈ŴB(1)〉
〈WB(1)〉+ 〈ŴB(1)〉

for N1 = N2 (2.31)

5The original prescriptions in [15] were presented without the modulus, since up to two loops the

expectation values at framing zero are real.
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This requires making use of the cohomological equivalence in (2.21), assuming a certain

relation between WB(ν) and the undeformed m-winding Wilson loop and finally assuming

the validity of the following identity

∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

) ∣∣∣
ν=1

= 0 for N1 = N2 (2.32)

As long as we do not know the exact expression for 〈WB(ν)〉ν , 〈ŴB(ν)〉ν this identity can-

not be rigorously proved. However, it has been indirectly verified up to three loops by

testing the prediction for B1/2 from (2.31) against an explicit computation of Γ
1/2
cusp at this

order [27]. In analogy with the m-winding case, it is likely to hold at any perturbative order

and, in particular, at strong coupling. In fact, as an indirect check, in this regime (2.31)

agrees with the explicit string theory computation of the Bremsstrahlung function per-

formed up to the first subleading term [43, 44]. Remarkably, as discussed in section 4

our conjectured matrix model that computes 〈WB(ν)〉ν , 〈ŴB(ν)〉ν , for N1 = N2 satisfies

relation (2.32) not only at ν = 1 but as a functional identity.

Assuming (2.32) to be true has far-reaching consequences, the main one being that

Bθ
1/6 and B1/2 can be entirely expressed in terms of the phase ΦB introduced in (2.16) for

the latitude Wilson loop at framing ν and single winding (we use the shorthand notation

ΦB(ν, 1, ν) ≡ Φ(ν))

Bθ
1/6 =

1

4π2
tan Φ(ν) ∂νΦ(ν)

∣∣∣
ν=1

, B1/2 =
1

8π
tan Φ(1) for N1 = N2 (2.33)

In particular, it follows that a genuine perturbative computation of Bθ
1/6 directly from Γ

1/6
cusp

allows us to make a prediction for the Φ(ν) function. In fact, exploiting the four-loop result

for Bθ
1/6 given in [39, 40] the following prediction can be made for N1 = N2 = N and in

the planar limit [28]

Φ(ν) = π
N

k
ν − π3

6

N3

k3
(ν3 + 2ν) +O(k−5) + non-planar (2.34)

Note that for f = ν = 1 it consistently reproduces (2.17).

Now, merging (2.34) with the two-loop result for 〈WB(ν)〉0 [15], from (2.16) we obtain

a three-loop prediction for 〈WB(ν)〉ν in the case of ABJM theory

〈WB(ν)〉ν = 1 + iπ
N

k
ν +

π2

3

N2

k2
+ i

π3

6

N3

k3
ν3 +O(k−4) + non-planar (2.35)

In the next section we are going to test this prediction against a perturbative three-loop

calculation done at framing ν. This turns out to be an indirect check of the validity of

assumption (2.32) and, therefore, of identities (2.33) relating the Bremsstrahlung functions

to the phases of bosonic latitude Wilson loops.

3 Perturbative result for the latitude Wilson loop

In this section we compute the expectation value of the bosonic latitude Wilson loop

WB(ν) at weak coupling in perturbation theory. The evaluation of ŴB(ν) easily follows

by exchanging N1 ↔ N2 and sending k → −k.
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We consider the most general case where a non-trivial framing number f is taken into

account and the contour winds m times around the latitude circle. We also allow for the

trace in definition (2.3) to be taken in a generic representation R of the U(N1) gauge

group. The U(N1) color factors are expressed in terms of the Casimir invariants, as defined

in appendix A.1. We work at finite N1 and N2, i. e. no planar limit is assumed.

The multiple windings and higher dimensional representations are not independent

generalizations, as one can re-express the multiply wound Wilson loop as a linear com-

bination of an alternative basis of operators in different representations [25, 45]. Still, in

perturbation theory we can treat these two properties independently and use the afore-

mentioned relation as a consistency check of the computation.

In dealing with diagrams contributing to framing, we make use of general properties of

the pure Chern-Simons perturbation theory. In particular, we apply the Alvarez-Labastida

argument [46], stating that only diagrams with collapsible propagators can contribute to

framing, to rule out their non-planar realizations. We argue that up to three loops the whole

framing dependence of the Wilson loop can be effectively ascribed to and computed from the

Gauss linking integral (2.14). We remark that although the linking number f for two closed

curves is naturally an integer number, we will consider its continuation to real numbers.

Throughout the computation dimensional regularization in the DRED scheme is as-

sumed [47] (see also [48] and [24, 34, 36, 49, 50] for applications in perturbation theory in

Chern-Simons models).

In section 3.1 we give details of the calculation for the single winding Wilson loop,

whereas the generalization to multiple windings is discussed in section 3.2. For readers

who want to skip technical details we summarize our results in section 3.3. Finally, in

section 3.4 we revisit the proof of identities (2.26) and (2.27) in light of the appearance of

novel three-loop imaginary contributions not related to framing.

3.1 The computation

Bosonic and fermionic latitude Wilson loops in the fundamental representation and for

single winding have been computed in [15], up to two loops and at framing zero. At non-

trivial framing perturbative calculations up to three loops have been carried out in [24]

only for WB(1), in the fundamental representation and in the planar limit.

Generalizing those results to WB(ν) in a generic representation, at one loop the only

diagram contributing is a gluon exchange, which at non-trivial framing is proportional to

the Gauss integral (2.14)

〈WB(ν)〉(1)
f : = i π f C2(R) (3.1)

where C2(R) is defined in (A.7).

In order to draw higher loop diagrams in a more concise way we find convenient to

define a “double-line exchange” given by the combination of a bi-scalar exchange and a
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(a) (b) (c)

2

(d)

(e) (f) (g) (h) (i)

Figure 1. Diagrams contributing to the bosonic latitude three-loop expectation value. Wavy and

solid lines stand for gluons and scalars, respectively.

one-loop corrected gluon exchange evaluated in dimensional regularization

+ ≡ =
N2

k2

Γ2(1
2 − ε)

π1−2ε

−ẋ1 · ẋ2 + 1
4 |ẋ1||ẋ2|Tr(M1M2)

[(x1 − x2)2]1−2ε

(3.2)

The dependence on the latitude parameter comes from Tr(M1M2), where Mi stands for

the coupling matrix evaluated at point τi on the contour (see identity (B.10)).

It follows that at two loops the following diagrams contribute

〈WB(ν)〉(2)
f : = π2 1 + ν2

2
N2C2(R) (3.3)

= −π
2

6

(
N1C2(R)− C2

1 (R)
)

(3.4)

+ perms = −π
2

2
C2

2 (R) f2 (3.5)

In (3.5) we sum over all possible planar and non-planar permutations in order to factorize

the two-loop diagram as half the squared one-loop graph (3.1). This does not contradict

the Alvarez-Labastida argument, since the non-planar crossed configuration is identically

vanishing.

The non-trivial Feynman diagrams contributing at three loops are depicted in figure 1,

where for diagrams with multiple insertions a sum over all planar configurations arising

from permutations of contour points has to be understood.
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The triangle graph 1i is a new feature of the latitude Wilson loop stemming from

the fact that even though TrM vanishes, TrM3 does not, thus allowing for a non-trivial

contribution for ν 6= 1 (see identity (B.11)).

Except for this graph, all the other diagrams in figure 1 are structurally the same

contributing to the expectation value of WB(1), which were already analyzed in some detail

in [24]. We recall that all these diagrams vanish identically at framing zero [19], because

of the antisymmetry of the ε tensors appearing ubiquitously in Chern-Simons perturbation

theory, but give a non-vanishing contribution at framing f 6= 0. Other diagrams vanish

identically even at non-trivial framing thanks to the tracelessness of the scalar coupling

matrix, a property which is true in the undeformed case and remains true in the latitude

case, as well. These diagrams have not been included in figure 1. Diagrams with one-loop

corrections to the bi-scalar correlator have also been neglected, as they have been argued

to vanish identically [24], independently of framing.

In order to evaluate the diagrams in figure 1 we can exploit several partial results

from [24] to which we refer for more details on the computation. Those results are here

generalized to include the latitude deformation, generic representations of the U(N1) gauge

group, non-planar contributions and generic framing. In particular, the latitude deforma-

tion does affect only diagrams which contain bi-scalar insertions, whereas all the others

evaluate exactly as in the undeformed case.

Working with N1, N2 generically different, we can group the diagrams on the basis of

their color structures. In particular we find convenient to classify them according to their

leading power in N2.

Diagrams with no N2 powers. We start considering the subset of diagrams with

no contributions from the U(N2) sector, namely pure U(N1) Chern-Simons contributions.

These correspond to the class of diagrams 1a–1c, with all possible planar permutations

in the sequence of insertion points, according to the Alvarez-Labastida argument [46].

Having no coupling to the bi-scalar fields, these graphs do not depend on the latitude

parameter ν. Therefore they can be evaluated by observing that the combination of all

permutations provide a factorization of the diagrams into elementary pieces involving the

Gauss integral (2.14), which triggers the framing dependence. The result reads

+ 4 perms =
1

6
i f π3C2(R)

(
C2

1 (R)−N1C2(R)
)

(3.6)

+ 4 perms = −1

6
i f3 π3C3

2 (R) (3.7)

where C1(R), C2(R) are defined in (A.7).

Diagrams with N2
2 powers. A rather simple class of diagrams is the one with leading

N2
2 behavior, emerging from graphs 1d featuring gauge boson corrections at two loops [24,
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51]. Collecting the results of [24] for the gauge two-point function insertion diagram, and

extending them to the most general color structure (no new topologies arise for this case

and the relevant color factors can be found in appendix B.1) we find

2 = i π3 f
N2

[(
8 + 5π2

)
C2

1 (R)−
((

8 + π2
)
N1 + 4π2N2

)
C2(R)

]
8π2

(3.8)

Diagrams linear in N2. The most complicated contribution to the three-loop expec-

tation value comes from diagrams with leading linear N2 behavior. These include the

factorized diagrams 1e, the interaction diagrams 1f–1h and the triangle graph 1i.

The most efficient way to handle factorized diagrams is to sum over all possible pla-

nar and non-planar configurations, recalling that only their contractible configurations

contribute to framing, whereas the remaining ones vanish identically. Referring to the

diagram in figure 1e, this leads to the following factorization

+ perms = × = i π3f
1 + ν2

2
N2C

2
2 (R) (3.9)

where iπ3f is the value of the corresponding integral, whereas the rest comes from color

and combinatorics. A latitude dependent part arises from the double-line exchange (3.2).

The result can be correctly interpreted as emerging from the interference of the one-loop

framing phase and the two-loop perturbative result from diagram (3.3), reproducing the

expected exponentiation of framing.

Interaction diagrams 1f–1h are the most complicated and we do not possess an exact

expression for each individual graph. However, we can indirectly argue the value of their

sum as follows. In [24] it was explained that for the 1/6-BPS Wilson loop WB(1) in

the fundamental representation, consistency with the localization result requires the sum

of 1f–1h to cancel a suitable piece of the gauge two-point function contribution (3.8). As

a first consistency check we have verified that the same reasoning holds also for a generic

representation of the gauge group, as each interaction diagram has precisely the same color

factor as the gauge two-point function contribution. The total sum reads

+ + =
1

8
iπf

(
8 + π2

)
N2

(
N1C2(R)− C1(R)2

)
(3.10)

Turning on the latitude deformation seemingly spoils such an argument, since diagram 1f

acquires a ν-dependent factor from the trace of two M matrices, equation (B.10), that

would sabotage the balance required for the aforementioned cancellation. However, the

(ν2 − 1) term there, which would be absent in the undeformed case, is proportional to

sin2 τ1−τ2
2 and therefore vanishes for colliding insertion points. Consequently, it protects
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the integrand from developing the singularity that might cause a potential dependence on

framing. In fact, the corresponding integral can be shown to be framing independent and

when evaluated at framing zero it vanishes. The remaining ν-independent term in (B.10)

obviously yields the same contribution as in the undeformed case. Altogether, the latitude

deformation plays no role in the analysis of the interaction diagrams and we are led to

postulate that the whole contribution in the latitude case is precisely the same as in the ν =

1 case, that is diagrams 1f–1h cancel the same part of the two-loop gauge propagator (3.8).

Under this assumption, in the latitude case the only extra contribution is the triangle

diagram with three bi-scalar insertions, figure 1i. By direct inspection of the integrand, it

is manifest that no framing dependence arises, as there are no singularities for coincident

points. Therefore we can evaluate the diagram at framing zero and obtain

= −1

6
iπ3ν

(
ν2 − 1

)
N2

(
N1C2(R)− C2

1 (R)
)

(3.11)

where we have used the trace of three M matrices, equation (B.11), and the integral∫
0<τ3<τ2<τ1<2π

dτ1 dτ2 dτ3
sin (τ1 − τ2)− sin (τ1 − τ3) + sin (τ2 − τ3)

sin τ1−τ2
2 sin τ1−τ3

2 sin τ2−τ3
2

=
16

3
π3 (3.12)

can be evaluated immediately observing that the integrand is actually constant. We remark

that such a contribution is purely imaginary and therefore it mixes with the other imaginary

three-loop corrections that are due to framing, though this part is framing independent. At

this order this is the only imaginary contribution not arising from framing. In section 3.4

we provide an additional interpretation of this term.

3.2 Multiple windings

Multiple windings introduce an overall m-dependent factor for each diagram, which only

depends on the combinatorics of the insertions on the Wilson loops. Such factors can be

computed recursively in an algorithmic manner as shown in [33]. The strategy involves

simplifying iteratively the integration contours until landing on integrals which can be

immediately computed in terms of single winding ones. This translates into a system

of recursion relations, which supplied with an initial condition, that is the value of the

integrals at m = 1, can be solved exactly. This procedure can be applied at any loop order

and increases in complexity with the number of insertions on the Wilson contour. In some

cases a computer implementation becomes necessary.

For one- and two-loop diagrams we do not report the explicit computation, rather we

state the final result in section 3.3. Instead, we present some details of such a procedure

for the three-loop diagrams in figure 1, in particular stressing what is new compared to the

single winding case.

The main difference that arises at multiple winding is the following. As stated in

the previous section, for single winding only planar corrections contribute since the non-

planar configurations, being non-contractible, vanish identically for the Alvarez-Labastida
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theorem. For multiple winding, instead, it is no longer guaranteed that non-contractible

multiple winding diagrams do not contribute, since contractible single winding integrals can

appear when resolving the multiply wound contours according to the procedure described

above. Therefore, along the calculation we have to take into account all possible planar

and non-planar configurations.

To better illustrate this point, we begin by considering the case of the factorized

diagram in figure 1e. As in the single winding case, it is convenient to complete the sum of

planar configurations with the corresponding non-planar ones in order to reduce the three-

loop structure to the product of lower-order ones. This implies adding and subtracting the

integrals corresponding to the crossed contributions multiplied by the same color factors

of the planar ones, in such a way to symmetrize the integral. For the symmetrized part we

then obtain (the double line contour stands for multiple winding)

+ + + + +

= × = i π3

(
m4 − 1

3
m2(m2 − 1)

)
f

1 + ν2

2
N2C

2
2 (R) (3.13)

For the non-planar crossed contributions, using the algorithm of [33], a recursive relation

yields pictorially

+ =
1

3
m2(m2 − 1)

1 + ν2

2
N2

[
C2

1 (R)−N1C2(R) + C2
2 (R)

]

×

 + 5 permutations

 (3.14)

where the graphs on the right-hand-side represent integrals not diagrams, since the corre-

sponding color and combinatorial factors have been already stripped out. We note that the

term proportional to C2
2 (R) is the relics of the symmetrization procedure in equation (3.13).

Now, the combination of integrals in (3.14) is exactly the one appearing in (3.9) and eval-

uates iπ3f . Therefore, we find

+ = i
π3

3
m2(m2 − 1) f

1 + ν2

2
N2

[
C2

1 (R)−N1C2(R) + C2
2 (R)

]
(3.15)
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The evaluation of diagrams 1d and 1f–1i for multiple winding is straightforward. In

fact, diagrams with n insertions of fields on the contour have in general a dependence

on winding through a polynomial in m2 of degree
⌊
n
2

⌋
. In particular, for diagrams with

two and three insertions this boils down to a trivial m2 factor. Consequently, at multiple

winding the gauge two-point function diagram evaluates

2 = i π3 f
m2N2

[(
8 + 5π2

)
C2

1 (R)−
((

8 + π2
)
N1 + 4π2N2

)
C2(R)

]
8π2

(3.16)

The same occurs for the interaction diagrams of figures 1f–1h that simply acquire an overall

m2 factor compared to the single winding cousin. This is important since it allows to

conclude that the addition of winding does not jeopardize the argument for the cancellation

of these interaction diagrams against part of (3.16). Finally, the same m2 overall factor

arises for the triangle diagram as well.

Diagrams with five and six insertions of fields along the contour, see figures 1a–1c, are

the most complicated. Their planar configurations were computed in [33] and, extended

to generic representations, they read

+ 4 perms =
1

18
iπ3fm2

(
2m2 + 1

)
C2(R)

(
C2

1 (R)−N1C2(R)
)

(3.17)

+ 4 perms = − 1

18
iπ3f3m4

(
2 +m2

)
C3

2 (R) (3.18)

where we have summed over all possible planar permutations with the same topology, and

hence the same color factor.

The corresponding non-planar configurations give a non-trivial contribution since con-

tractible planar configurations appear when decomposing the multiply wound contours.

For five insertions we obtain

+ 4 perms =
1

18
iπ3fm2

(
m2 − 1

)
(N1 − C2(R))

(
N1C2(R)− C2

1 (R)
)

(3.19)

We note that in all the cases considered above the result of the recursive procedures orga-

nizes neatly in such a way that the singly wound integrals can be symmetrized and summed

straightforwardly. This is not the case for the non-planar contributions with six insertions,
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where the partial results for the individual topologies read

+5 perms =
2

15
m2
(
m2−1

)
C2(R)

(
C2(R)(C2(R)−N1)+C2

1 (R)
)

(3.20)

×

3(m2 +1)

 +

+(3m2−2)

 + +



+2 perms =
1

15
m2
(
m2−1

)
×
(
N2

1C2(R)−N1

(
C2

1 (R)+2C2
2 (R)

)
+C3

2 (R)+2C2
1 (R)C2(R)

)
(3.21)

×

3(m2−4)

 +

+(3m2 +8)

 + +



=
1

15
m2
(
m2−1

)
×
(
C2(R)

(
3C2

1 (R)+2N2
1

)
−3N1C

2
2 (R)−2N1C

2
1 (R)+C3

2 (R)
)

(3.22)

×

(m2 +6)

 +

+(m2−4)

 + +


In all these formulae the pictures on the right-hand-side stand for integrals over the contour

and not diagrams, since the color factors have been already extracted.

Dealing with these integrals individually would be hard. However the non-planar sextic

diagrams above combine in such a way that a symmetrized sum of integrals is reconstructed

and simply evaluated. Amusingly, the final sum reads

(3.18) + (3.20) + (3.21) + (3.22) =
1

3
m4
(
3m2C3

2 (R) (3.23)

+
(
m2 − 1

) (
N1C2(R)− C2

1 (R)
)

(N1 − 3C2(R))
)
× 1

6

3

=

= − 1

18
iπ3f3m4

(
3m2C3

2 (R) +
(
m2 − 1

) (
N1C2(R)− C2

1 (R)
)

(N1 − 3C2(R))
)

3.3 The general three-loop result

Summing all the diagrams computed in the previous sections we obtain the three-loop

expectation value for the bosonic latitude Wilson loop with parameter ν, framing f , winding
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number m and for a generic representation R

〈Wm
B (ν,R)〉f = 1+

iπm2fC2(R)

k
− π

2m2

6k2

(
C2(R)

(
3f2m2C2(R)

+N1

(
f2
(
1−m2

)
+1
)
−3
(
ν2 +1

)
N2

)
+C2

1 (R)
(
f2
(
m2−1

)
−1
))

+
i

18k3
π3m2

(
C1(R)2

(
3m2fC2(R)

(
1−f2

(
m2−1

))
+f

(
m2−1

)
N1

(
f2m2−1

)
+3N2

(
f
((
m2−1

)
ν2 +m2 +2

)
+ν3−ν

))
+C2 (R)

(
−3fm2C2 (R)

(
f2m2C2 (R)−f2

(
m2−1

)
N1−3

(
ν2 +1

)
N2 +N1

)
−f3m2

(
m2−1

)
N2

1 +f
((
m2−1

)
N2

1 −3
(
m2−1

)(
ν2 +1

)
N1N2−9N2

2

)
−3ν

(
ν2−1

)
N1N2

))
+O

(
k−4

)
(3.24)

where the Casimir invariants C1(R) and C2(R) for various representations are reported

in (A.8) and (A.9).

As already mentioned, the multiple windings and higher dimensional representations

are not independent generalizations, rather they provide two different alternative bases of

operators. Using the general expression in (3.24), we have verified explicitly that our result

is in agreement with this expectation. In fact, by considering the first few windings of

the Wilson loop in the fundamental representation it is easy to check that its expectation

value can be obtained as a combination of single-winding operators in hook representations,

according to the formula

〈Wm
B (ν,�)〉f =

m−1∑
s=0

(−1)s
〈
W 1
B

(
ν,

)〉
f

(3.25)

It is important to stress that this holds for any generic framing number.

In the undeformed case (ν = 1) this provides a generalization of the three-loop result

of [24] to generic representations and with the inclusion of all non-planar contributions. In

the case of totally symmetric and antisymmetric representations we have tested our result

evaluated at f = 1 against the weak coupling expansion of the matrix models [52] (see

also [53])

〈Wm
B (1)〉(k, Sn) =

1

dim(Sn)

〈 ∑
1≤i1≤···≤in≤N1

e2πm (λi1+···+λin)

〉

〈Wm
B (1)〉(k,An) =

1

dim(An)

〈 ∑
1≤i1<···<in≤N1

e2πm (λi1+···+λin)

〉
(3.26)

where the expectation values are defined in terms of the measure in (2.12). In appendix C

we supply the four-loop expansion of these matrix models up to rank-3 representations.

We find perfect agreement with the perturbative result (3.24) at ν = 1, thus providing a

strong mutual check of the correctness of (3.24) and of the localization prediction.
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Specifying result (3.24) to the fundamental representation of the gauge group U(N1)

we obtain

〈Wm
B (ν)〉f = 1+

iπfm2N1

k
(3.27)

− π
2m2

6k2

[(
f2(2m2 +1)+1

)
N2

1 −3
(
ν2 +1

)
N1N2 +f2(m2−1)−1

]
− iπ

3m2

18k3

[
N3

1 f
(
f2
(
m2 +2

)
m2 +2m2 +1

)
+N2

1N2

(
3ν
(
ν2−1

)
−3f

(
2m2 +1

)(
ν2 +1

))
+9fN1N

2
2

+fN1

(
2f2m4−2

(
f2 +1

)
m2−1

)
−3N2

(
f
((
m2−1

)
ν2 +m2 +2

)
+ν3−ν

)]
+O

(
k−4

)
and for single winding it boils down to

〈WB(ν)〉f = 1 +
iπfN1

k
+
π2
[
−
(
3f2 + 1

)
N2

1 + 3
(
ν2 + 1

)
N1N2 + 1

]
6k2

− iπ3

6k3

[
f
(
f2 + 1

)
N3

1 +N2
1N2

(
ν3 − ν − 3f

(
ν2 + 1

))
+ 3fN1N

2
2 − fN1 −N2

(
3f + ν3 − ν

)]
+O

(
k−4

)
(3.28)

Finally in the ABJM theory (N1 = N2 ≡ N) this reads

〈WB(ν)〉f = 1 +
iπfN

k
+

π2

6k2

[
N2
(
3(ν2 − f2) + 2

)
+ 1
]

(3.29)

− iπ3N

6k3

[
N2
(
f3 + f

(
1− 3ν2

)
+
(
ν2 − 1

)
ν
)
− 4f − ν

(
ν2 − 1

)]
+O

(
k−4

)
The crucial observation is that in the planar limit, setting f = ν this expression coincides

with prediction (2.35). Moreover, it verifies relation (2.32) that was required for the con-

sistency of expression (2.31) for the 1/2-BPS Bremsstrahlung function. However, we stress

that in the more general case N1 6= N2 identity (2.32) is no longer valid, as one can easily

check from (3.28). Consequently, all its implications discussed in section 2 stop working.

We conclude observing that the expectation value of the fermionic latitude can in prin-

ciple be obtained from (3.28) by using the cohomological equivalence (2.21) conjectured

in [24]. This applies only for the putative framing f = ν, while a generic framing would

require a full-fledged computation of the fermionic diagrams at three loops, which is cur-

rently not known. At this special value of framing, using (2.21) we obtain the following

prediction (with single winding, for simplicity)

〈WF (ν)〉ν = e
iπν(N1−N2)

k

{
1 +

2iπνN1N2R
k

cos
πν

2

− π2R
6k2

[
(N1 −N2)

(
N2

1 +N2
2 − 2

(
3ν2 + 1

)
N1N2 − 1

)
cos

πν

2

− i(N1 +N2)
(
N2

1 − 4N2N1 +N2
2 − 1

)
sin

πν

2

]
− iπ

3νN1N2R
3k3

[
ν2
(
N2

1 − 3N2N1 +N2
2 − 1

)
− 3
]

cos
πν

2
+O

(
k−4

)}
(3.30)
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where the normalization factor R has been defined in (2.8). The first two terms of this

expansion reproduce the perturbative expansion of [15].6

3.4 The imaginary term at framing zero and the Bremsstrahlung functions

Imaginary contributions to the expectation values of Wilson loops in ABJM are usually

associated to framing. Hence, the appearance of an imaginary term at three loops in the

expectation value of the latitude Wilson loop at framing zero is a bit surprising, but not

inconceivable. In fact, the operator in (2.3) that we are considering does not possess a

definite hermiticity property, which would enforce the reality of its expectation value.

Still, its appearance poses a question concerning the relation between the latitude and

the Bremsstrahlung function associated to the internal angle of the generalized cusp. In

the original proposal [15, 22], Bθ
1/6 was prescribed to be equivalent to

Bθ
1/6 =

naive

1

4π2
∂ν log〈WB(ν)〉0

∣∣∣
ν=1

(3.31)

where the latitude Wilson loop at framing zero on the right-hand-side was understood to

be real. According to our findings it is not. This would induce an imaginary contribution in

the Bremsstrahlung function that cannot be there, as explicitly checked by the computation

in [39, 40].

In order to resolve this tension we go back to the derivation of (3.31) in [22] and point

out where this subtlety kicks in.

Using definition (2.25), the Bremsstrahlung function associated to θ is first determined

by explicitly taking the derivatives with respect to θ of the generalized cusp Wilson loop.

This is identified with the integral of two-point functions of operators constructed with the

C1, C2 fields [22]

∂2
θ log〈W∠

B 〉
∣∣∣
θ=0

=
8π2

k2

∫
0<t2<t1

dt1 dt2
(
〈〈C1C̄

2(t1)C2C̄
1(t2)〉〉line + 〈〈C2C̄

1(t1)C1C̄
2(t2)〉〉line

)
(3.32)

where the double bracket denotes the (normalized) correlation function of local operators

at positions t1 and t2 on the 1/6-BPS Wilson straight line. Such a non-local operator

defines a one-dimensional superconformal defect and the first two-point function above is

fixed by conformal symmetry to possess the form

〈〈C1C̄
2(t1)C2C̄

1(t2)〉〉line =
γ

(t1 − t2)2
(3.33)

where the coefficient γ encapsulates the quantum corrections and is ultimately proportional

to the Bremsstrahlung function. The line configuration can be mapped to a circle via a

conformal transformation, where the two-point function takes the form

〈〈C1C̄
2(τ1)C2C̄

1(τ2)〉〉circle =
γ

2 (1− cos(τ1 − τ2))
(3.34)

in terms of the angles τ1 and τ2 on the circle. Conformal invariance of the theory assures

that the γ factors in (3.33) and (3.34) are the same.

6Note that there is a typo in formula (3.19) of that paper.
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The second correlation function in (3.32) is simply obtained from the first by exchang-

ing t1 and t2 on the line or, equivalently, τ1 and τ2 on the circle. Since the operators

obey bosonic statistics, we would be led to conclude that the two correlation functions are

identical. However, expressions (3.33) and (3.34) are correct only at non-coincident points,

whereas close to the singularity at t1 = t2 (or τ1 = τ2) a suitable regularization is required

(for instance by the addition of contact terms) that might introduce parity-odd corrections.

Since in (3.32) we are integrating over t1, t2 this regularization can have sizable effects and,

especially, lead to different results for the two integrals. Therefore, in the following we

treat the two correlation functions as different objects.

For the latitude Wilson loop at framing zero an identity analogous to (3.32) reads

∂ν log〈WB(ν)〉0
∣∣∣
ν=1

= −8π2

k2

∫ 2π

0
dτ1

∫ τ1

0
dτ2

(
ei(τ1−τ2)〈〈C1C̄

2(τ1)C2C̄
1(τ2)〉〉circle

+ e−i(τ1−τ2)〈〈C2C̄
1(τ1)C1C̄

2(τ2)〉〉circle

)
(3.35)

where the exponentials in the integrand arise from the eiτ factors in the latitude opera-

tor (2.3). The correlation functions on the right-hand-side are on the 1/6-BPS circle, as we

have set ν = 1 after taking the derivative. We see that keeping the correlation functions

in (3.35) distinct an imaginary part arises, proportional to the antisymmetric combination

of the two. For the purpose of computing the Bremsstrahlung function in terms of the

latitude Wilson loop, we ascertain from (3.32) that only the symmetric combination of the

correlation functions is relevant. This is equivalent to taking the real part in (3.35), which

on the left-hand-side amounts to enforcing the modulus of the latitude expectation value.

The precise coefficient of the relation between the Bremsstrahlung function and the latitude

is computed by performing the integral in (3.35), after plugging the generic form of the

correlation function (3.34) on the circle and equating the parameters γ appearing in (3.34)

and (3.33). The steps are the same as in the original derivation of [22]. The final result reads

Bθ
1/6 =

1

4π2
∂ν log | 〈WB(ν)〉 |

∣∣∣
ν=1

(3.36)

We can thus put such a prediction which was anticipated in (2.27) on firmer grounds, from

a first principles derivation.7

Finally, we can explicitly verify the emergence of an imaginary contribution at three

loops in the latitude (which in that context comes from the triangle diagram 1i), as arising

from the imaginary part of the right-hand-side of (3.35), of the form

∂ν log〈WB(ν)〉(3)
ν

∣∣∣
ν=1

= −i 8π2

∫ 2π

0
dτ1

∫ τ1

0
dτ2 sin(τ1 − τ2) (3.37)

×
(
〈〈C1C̄

2(τ1)C2C̄
1(τ2)〉〉(1)

circle − 〈〈C2C̄
1(τ1)C1C̄

2(τ2)〉〉(1)
circle

)
The only relevant diagram consists in the insertion of a bi-scalar field on the 1/6-

BPS Wilson line. The matrix governing this contribution in the connection is M =

7We acknowledge enlightening discussions with Lorenzo Bianchi for attaining this result (a similar dis-

cussion appears in [28]).
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diag(−1, 1,−1, 1) = M
∣∣
ν=1

. Using the explicit expansion of the two-point functions, i.e.

computing the whole triple integral

∂ν log〈WB(ν)〉(3)
ν

∣∣∣
ν=1

= i 16π3

∫ 2π

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 sin(τ1 − τ2)

× TrR
(
〈C1C̄

2(τ1)C2C̄
1(τ2)MJ

I CJ C̄
I(τ3)〉 − 〈C2C̄

1(τ1)C1C̄
2(τ2)MJ

I CJ C̄
I(τ3)〉

)
+ 2 path ordered perms (3.38)

and performing exchanges in the integration variables, one can prove that this contribu-

tion precisely reconstructs the integrand of (3.12). This automatically verifies the equality

in (3.35) and explains the imaginary contribution of the latitude from the two-point func-

tion perspective.

This result hints at the fact that the two-point functions in (3.37) are actually distinct

quantum mechanically due to the necessity of regularizing them at coincident points, as

already discussed. In order to better clarify this point, we alternatively compute the

one-loop two-point functions first and then plug them into (3.37). Calculating such a

contribution on the circle is not straightforward, while it is immediate on the line. This

computation reveals that indeed at one loop the integrands of the path-ordered correlation

functions in (3.37) are opposite, due to R-symmetry index algebra and the properties of

the matrix M = diag(−1, 1,−1, 1). However, after integrating over the insertion of the bi-

scalar field along the line, the result can be shown to vanish. On the one hand this finding

is in line with the symmetry expectations on the two-point functions, on the other hand it

is seemingly in contradiction with the non-vanishing result obtained above in (3.38). This

puzzle is explained observing that the integral in (3.37) is actually divergent and therefore

the insertion of a vanishing integrand should be handled with care. One possibility consists

in computing the one-loop two-point functions on the line in dimensional regularization

〈〈C1C̄
2(t1)C2C̄

1(t2)〉〉(1)
line =

(
N1C2(R)− C2

1 (R)
)
N2 tanπε sec 2πεΓ3

(
1
2 − ε

)
161+επ2−3ε Γ(1− 2ε)Γ

(
2ε+ 1

2

)
((t1 − t2)2)1−3ε (3.39)

where consistently we obtain an order ε correction. The other correlation function yields

the opposite result, as stated above. We can plug this into (3.37), though this requires

performing a conformal map that is not justified in non-integer dimensions. Ignoring

this objection and pushing the computation ahead we ascertain that the resulting integral

in (3.37) develops a pole in the regulator ε, thus exposing a finite contribution out of (3.39).

We ultimately find

− i 8π2

∫ 2π

0
dτ1

∫ τ1

0
dτ2 sin(τ1 − τ2)

(
〈〈C1C̄

2(τ1)C2C̄
1(τ2)〉〉(1)

circle

−〈〈C2C̄
1(τ1)C1C̄

2(τ2)〉〉(1)
circle

)
= − iπ

3

3

(
N1C2(R)− C2

1 (R)
)
N2 (3.40)

which precisely agrees with the derivative of the latitude expectation value at three loops

and framing zero, that is basically the triangle diagram (3.11). In conclusion, we have

detected the interesting phenomenon that from the 1/6-BPS defect CFT perspective the

triangle diagram in the latitude deformation arises from an anomalous behavior of the

relevant two-point functions on the defect.
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4 The matrix model

As reviewed in section 2, a matrix model prescription for computing Wilson loops in

ABJ(M) theory exists for the ν = 1 case [8], while it is still lacking for more general

latitude operators. In this section we make a first attempt to fill this gap by proposing a

matrix model to compute latitude Wilson loops. We then discuss some consistency checks

to support our proposal.

The bosonic latitude Wilson loop is partially supersymmetric and its preserved su-

percharges are given in equation (2.9) for ω1 = ω4 = 0. Consequently, and in parallel to

the analogous situation in N = 4 SYM, it might be possible to compute its expectation

value exactly using localization techniques. However, while in the four-dimensional case

the latitude expectation value is obtained from the undeformed one by a simple rescaling

of the coupling constant [7, 54–61], this is no longer true for ABJ(M), as already appears

from the perturbative results of the previous section. Therefore, we expect a significant

modification of the matrix model to take place as a result of the localization process. This

program would involve localizing the ABJ(M) theory on the three-sphere using any of the

supercharges in (2.9) preserved by the bosonic latitude. In particular, since we expect

the localization procedure to be consistent with the cohomological equivalence (2.10), we

should use the linear combination of supercharges (2.11). As already noticed in [15], this

supercharge is non-chiral and differs in nature from those considered in the original anal-

ysis of [8]. Therefore, the generalization of the localization procedure of [8] to the latitude

Wilson loop is not straightforward.

We are not going to pursue this direction here, rather we conjecture directly a matrix

model that computes the latitude expectation value exactly, consistently with the pertur-

bative results already available.

The idea is to start from the matrix model average (2.12) computing the expecta-

tion value of 1/6-BPS Wilson loops and try to deform it by introducing a suitable de-

pendence on the ν parameter. As a route guidance we use the proposal (2.28) on the

θ-Bremsstrahlung function, which in turn requires the ν-derivative of the matrix model to

satisfy identity (2.29).

A natural way to satisfy this condition consists in requiring that the latitude Wilson

loop is computed by inserting the operator Tr e2π
√
νλ into a matrix model which is symmet-

ric under the inversion ν ↔ 1/ν. In fact, in this way taking the derivative with respect to

ν evaluated at ν = 1, the ν dependence of the matrix model measure plays no role and the

only non-trivial contribution comes from the derivative acting on the operator insertion.

The result is a matrix model where the integrand, being evaluated at ν = 1, corresponds to

the well-known ABJ(M) matrix model, except for the operator insertion ∂νTr e2π
√
νλ|ν=1

which can be formally identified with the m-derivative of a multiply wound 1/6-BPS Wil-

son loop evaluated at m = 1, with m ≡
√
ν. In particular, trading ∂ν with ∂m provides

the correct 1/2 factor appearing in (2.29).

Such an argument is reminiscent of the one proposed in [26], but somehow with a

reverse logic. In that case, for the ABJM theory a supersymmetric Wilson loop on a

squashed sphere was considered, whose matrix model is invariant under the inversion of
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the squashing parameter [62]. This was used to argue that the derivative of this Wilson

loop expectation value with respect to the squashing parameter b, evaluated at b = 1, could

be traded with the derivative of the multiply wound 1/6-BPS Wilson loop with respect to

the winding number m.

Driven by this discussion we are led to propose the following matrix model average for

the expectation value of a multiply wound latitude Wilson loop

〈Wm
B (ν)〉 =

〈
1

N1

∑
1≤i≤N1

e2πm
√
ν λi

〉
(4.1)

where the average is evaluated and normalized using the matrix model partition function

Z =

∫ N1∏
a=1

dλa e
iπkλ2

a

N2∏
b=1

dµb e
−iπkµ2

b (4.2)

×

N1∏
a<b

sinh
√
νπ(λa − λb) sinh

π(λa − λb)√
ν

N2∏
a<b

sinh
√
νπ(µa − µb) sinh

π(µa − µb)√
ν

N1∏
a=1

N2∏
b=1

cosh
√
νπ(λa − µb) cosh

π(λa − µb)√
ν

Similarly, 〈Ŵm
B (ν)〉 corresponds to the insertion of 1

N2

∑
1≤i≤N2

e2πm
√
ν µi . According to

the discussion above, such a matrix model should arise from a suitable localization of the

ABJ(M) theory.

This is the simplest non-trivial deformation of the matrix model (2.12) that lands

back on the usual expression at ν = 1, and whose kernel is symmetric under ν ↔ 1/ν. The

precise dependence on ν in the hyperbolic functions and in the operator insertion is then

fixed via comparison with the perturbative results. Indeed, we can evaluate this expression

by expanding it at weak coupling. The main result of this analysis is that we recover

precisely the expectation value (3.27) for the multiply wound latitude in the fundamental

representation evaluated at framing ν. We stress that the agreement with the perturbative

result holds separately for all different color structures at generically unequal and finite N1

and N2 and for generic winding number m. Moreover, in the N1 � N2 approximation, the

matrix model reconstructs the pure Chern-Simons result at framing ν, and in the specular

N2 � N1 limit it reproduces the expected behavior of [51].

In addition, we have considered the extension of the matrix model average defined

in (4.1) to higher dimensional representations. We have explicitly ascertained that apply-

ing the prescriptions (3.26) (with an extra
√
ν factor in the exponents) for the first few

totally symmetric and antisymmetric representations, we do reproduce the corresponding

perturbative results (3.24) for bosonic latitude Wilson loops. This lead us to conjecture,

that the matrix model (4.1) computes also the expectation value of latitude Wilson loops

in higher dimensional representations, upon applying the same prescriptions (3.26), as in

the undeformed case.

It is remarkable that the agreement works only at the specific choice of framing f = ν.

On the one hand this does not come as a surprise. In fact this occurs already for the
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1/6-BPS Wilson loop where localization implies non-trivial framing f = 1, which is the

scheme compatible with the cohomological equivalence between bosonic and fermionic Wil-

son loops. For the latitude Wilson loop it is then highly suggestive that the agreement

manifests at f = ν, since this is precisely the value at which the conjectured cohomological

equivalence with the fermionic Wilson loop holds (see equation (2.18)). Since we expect a

putative matrix model average to be able to compute both the bosonic and the fermionic

operators, it is then natural that the matrix model indeed provides the result at framing ν.

Although it might sound a bit weird to consider non-integer framing, we note that at

the level of the matrix model continuing the framing from an integer value to a generically

real number is perfectly legitimate and is also a common occurrence (despite usually only

for rational values), for instance when computing torus knot invariants in Chern-Simons

theory [45].

We can finally draw a parallel with the four-dimensional N = 4 SYM theory. In

that case, it is easy to realize that applying an analogous deformation procedure on the

Gaussian matrix model computing the expectation value of Wilson loops in that theory, we

reproduce the latitude operators. In fact, the ν dependent deformations in the matrix model

measure cancel out completely and one is left with a modified operator insertion exhibiting

an additional ν factor at the exponent. This eventually provides the coupling constant

rescaling that characterizes the expectation value of latitude Wilson loops in N = 4 SYM.

4.1 Properties and relations with other matrix models

Supported by this first evidence on the correctness of our proposal, we devote the rest of

this section to a discussion of its main properties and its possible interpretation.

First, we note that a striking similarity exists between expression (4.2) and the kind of

matrix model emerging as the result of the so-called symplectic or SL(2,Z) transformation

of the sphere partition function of pure Chern-Simons theory [45]. This depends on two co-

prime integer parameters (P,Q) and has been argued to compute torus knot invariants [45]

(see also [63–65] for more references on torus knot invariants), using the celebrated relation

between knots and Chern-Simons theory [3]. In our case, the symplectic transformation

is rather performed on the supermatrix model (or equivalently on the lens space S3/Z2

partition function [66, 67]) and the result reads

Z
(P,Q)
ABJ(M) =

∫ N1∏
a=1

dλa e
iπk
PQ

λ2
a

N2∏
b=1

dµb e
− iπk
PQ

µ2
b (4.3)

×

N1∏
a<b

sinh
π(λa − λb)

P
sinh

π(λa − λb)
Q

N2∏
a<b

sinh
π(µa − µb)

P
sinh

π(µa − µb)
Q

N1∏
a=1

N2∏
b=1

cosh
π(λa − µb)

P
cosh

π(λa − µb)
Q

Consequently, the Wilson loop averages computed with this matrix model

〈W (P,Q)
R 〉 =

〈spR(e2πλa , e2πµb)〉
Z

(P,Q)
ABJ(M)

Z
(P,Q)
ABJ(M)

(4.4)

– 30 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
0

where spR is the supersymmetric Schur function for the partition pR associated to the rep-

resentation R, should arguably yield torus knot invariants of U(N1|N2) Chern-Simons the-

ory [68] (they are a generalization of colored HOMFLY polynomials [69] to U(N1|N2)/lens

space). This interpretation in terms of knot invariants works only for coprime P,Q integers,

this condition ensuring that the contour closes on the two-torus. The case we are consider-

ing is a (perfectly sensible) generalization of the torus knot matrix model to non-coprime

integer values of the parameters, being P =
√
ν and Q = 1/

√
ν. Hence, in general the

latitude Wilson loop is not really computing knot invariants, as the corresponding contour

does not close, rather it wraps the two-torus densely. An exception arises in the degenerate

situations in which the torus reduces to one of the two cycles of length 2πP or 2πQ, respec-

tively. In these two cases the factor in the Wilson loop operator of (4.1) is precisely of the

form required for the closure of the contour (with P =
√
ν being the length of the circle).

The matrix model in (4.2) can also be obtained by localizing the N = 2 U(N1 +

N2) Chern-Simons theory on the squashed lens space S3√
ν
/Z2 with squashing parameter√

ν [62, 70, 71]. Selecting the particular vacuum that breaks the gauge group to U(N1)×
U(N2), and then continuing it to the supermatrix version as done for the ABJ(M) matrix

model [72–74], we land on (4.2). In fact, considering Chern-Simons theory with supergroup

U(N1|N2) is (at least perturbatively) equivalent to the lens space interpretation by rewriting

its matrix model in the two-cut form and taking the analytic continuation N2 → −N2.

After integrating out the N = 2 auxiliary fields one expects to recover the pure Chern-

Simons observables and hence possibly compute knot invariants. In [75] this procedure was

indeed applied to N = 2 Chern-Simons theory on a squashed sphere, which was observed to

yield torus knot invariants of pure Chern-Simons on the three-sphere. Our matrix model is

formally a particular case of N = 2 Chern-Simons on a squashed lens space. The analysis

of [75] then suggests that this matrix model should compute torus knot invariants on the

lens space RP3. This is indeed consistent with the identification of the latitude matrix

model and that for torus knot invariants, as described above.

In cauda venenum, we conclude with few critical arguments on our proposal. In partic-

ular we discuss whether the matrix model (4.1) can be interpreted as the result of localizing

the ABJ(M) theory on S3, with the insertion of a ν-dependent operator corresponding to

the latitude Wilson loop.

In principle, if this were the case one might expect the matrix model average to be

computed with the ordinary ν-independent measure appearing in the ABJ(M) partition

function. Instead, in our proposal (4.1) the kernel depends explicitly on ν. However, as

already stated, if we require the localization procedure to be compatible with the cohomo-

logical equivalence, the path integral should be localized with the supercharge (2.11). Since

the latter exhibits an explicit dependence on ν it might reasonably lead to the conjectured

ν-dependence of the matrix model in (4.2).

If this interpretation is correct, then (4.2) itself should, after integration, give rise to

the usual, ν-independent, result for the ABJ(M) partition function. In fact, in the N1 = N2

case, expression (4.2) can be rearranged in such a way that the ν-dependence disappears

completely and it ends up coinciding with the ABJM partition function on S3. More details

on this computation can be found in the next subsection.
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Instead, for the most general N1 6= N2 case a non-trivial ν dependence survives in the

phase of the partition function (see equation (4.7)), whose appearance has been ascribed to

a Chern-Simons framing anomaly in literature [76, 77]. This leads to the conclusion that the

deformation affects the partition function only in its somewhat unphysical part, whereas

its modulus is ν independent. However, this is not a totally satisfactory explanation yet.

A more general and cautious attitude could be to assume that expression (4.1) is only

a possible convenient way of rewriting the matrix model obtained properly via localization,

which could arise as the result of applying some identities at the level of the matrix model

average for the latitude Wilson loop. However, while we have verified that it is possible to

perform a transformation that brings us back to the ordinary ABJ(M) partition function,

the form of the resulting operator insertion is not very enlightening.

In conclusion, we do not have a definite clear explanation of whether and how the

matrix model (4.1) could arise by performing an honest derivation of the latitude expec-

tation value via localization, although there are some reassuring indications at least for

the ABJM case. Nevertheless, supported by the striking agreement with the perturba-

tive computation at weak coupling, we assume as a working hypothesis that the proposal

in (4.1) correctly reproduces the latitude expectation value. Equipped with this tool, in

section 5 we perform a study of the matrix model average at strong coupling, where very

little information is known on latitude Wilson loops [22].

4.2 Reformulation as a Fermi gas

The ABJ(M) matrix model can be reformulated in terms of a Fermi gas (see [78] for the

original derivation in ABJM theory and [79–82] for its generalization to the ABJ model).

This perspective provides a powerful tool for expanding systematically the partition func-

tion and Wilson loop observables in powers of 1/N at strong coupling, by using statistical

mechanics technology. In this section we point out that the proposed matrix model for the

latitude Wilson loop can also be given such an interpretation, paving the way for its study

in the type IIA string and M-theory regimes. For simplicity we restrict the analysis to the

ABJM slice, N1 = N2 = N .

The partition function. The crucial property that streamlines the Fermi gas reformu-

lation is the Cauchy identity, which we present in a form that is suitable for our purposes

N∏
a<b

sinh r π (λa − λb) sinh r π (µa − µb)

N∏
a=1

N∏
b=1

cosh r π (λa − µb)

=
∑
σ∈SN

(−1)σ
N∏
a=1

1

cosh r π (λa − µσ(a))
(4.5)

Here the final sum is over all the permutations of the N eigenvalues and r is an arbitrary

parameter.

We split the integrand of (4.2) into two combinations of hyperbolic functions with

arguments containing the factors
√
ν and 1/

√
ν respectively, and apply the Cauchy identity
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separately by choosing r in (4.5) appropriately. This procedure is similar for instance to

the one used in [78] for N = 3 quiver models. After few algebraic steps we end up with8

Z = 22NN !
∑
σ∈SN

(−1)σ
∫

dyN

(2πk)N

N∏
a=1

(
2 cosh

ya
2

)−1
(

2 cosh
ya − yσ(a)

2k

)−1

(4.6)

We thus see that the dependence on ν drops completely and the partition function lands

on the same expression as for ABJM theory. We stress that these last steps are valid only

for N1 = N2.

For different ranks of the gauge groups the starting point (4.5) must be replaced by a

generalization of the Cauchy determinant identity discussed in [79–81]. Then if we repeat

the steps leading from (4.5) to (4.6), we can isolate and evaluate the ν−dependent part of

the partition function. We find

exp

(
πi

12k

(
ν +

1

ν

)
((N1 −N2)3 − (N1 −N2))

)
(4.7)

The only effect of the deformed measure consists in altering the original phase of the ABJ

partition function obtained in [21] by a trivial ν−dependent multiplicative factor.

Going back to the ABJM case, it was observed in [78] that (4.6) can be formally

interpreted as the canonical partition function of an ideal Fermi gas of N particles

ZN = 22NN !
∑
σ∈SN

(−1)σ
∫
dyN

N∏
a=1

ρ(ya, yσ(a)) ≡ Tr ρ (4.8)

with a density matrix ρ completely factorized into non-trivial one-particle density matrices

ρ(ya, yσ(a)) =
1

2πk
(
2 cosh ya

2

) (
2 cosh

ya−yσ(a)

2k

) (4.9)

We can then define the corresponding one-particle quantum Hamiltonian

ρ̂ = e−Ĥ such that 〈y1|ρ̂|y2〉 ≡ ρ(y1, y2) (4.10)

Using the explicit expression for ρ in (4.9) the Hamiltonian can be written as

e−Ĥ = e−U(q̂)e−T (p̂) , U(q̂) = log

(
2 cosh

q̂

2

)
, T (p̂) = log

(
2 cosh

p̂

2

)
(4.11)

in terms of a non-standard kinetic term T (p̂) and a potential U(q̂), where q̂ and p̂ are

canonically conjugate operators satisfying

[q̂, p̂] = i~ , ~ = 2πk (4.12)

Accordingly, the quantum average of a single-particle operator Ô ≡ O(q̂, p̂) is given by

〈Ô〉 = Tr(ρ̂ Ô) (4.13)

8Here we have rescaled the integration variables in order to obtain normalizations as in [78].
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Introducing Wilson loops. When a Wilson loop operator of the form
∑N

i=1 e
2πm
√
νλi ,

relevant for computing the bosonic latitude, is inserted into the matrix model average we

can still use the Cauchy identity and perform the same steps as those leading to (4.6). In

the case of a single winding operator (m = 1) the result we obtain reads

〈WB(ν)〉ν =
22NN !

Z
× (4.14)

×
∑
σ∈SN

(−1)σ
∫

dyN

(2πk)N

N∑
c=1

ei
πν
k e

yc
k

N∏
a=1

2 cosh
ya
2

∏
a 6=c

2 cosh
ya − yσ(a)

2k
2 cosh

yc − yσ(c) + 2iπν

2k

As expected, the ν dependence does not drop any longer. In particular, it appears not only

in the overall phase factor, but also in an interacting piece. This can be interpreted as the

statement that for this Wilson loop the framing factor is in general non-trivial and related

to the ν parameter. This is a generalization of what happens already for the undeformed

operator (ν = 1), for which the matrix model computes the average at framing one.

Within the Fermi gas approach reviewed above, the Wilson loop expectation

value (4.14) maps to the quantum average (4.13) of the ν-dependent one-body operator

Ô(ν) = e(q̂+ ν p̂)/k (4.15)

with the ABJM density operator defined in (4.10), (4.11).

We observe that for ν = 1 this operator reduces to that corresponding to the unde-

formed Wilson loop [25]. In general, the presence of the ν factor unbalances the (q̂, p̂)

symmetry, which manifests in the ν = 1 case. We also point out that the insertion of

operator (4.15) implies a normalization for the Wilson loop expectation value that differs

by an overall N factor from the one used at weak coupling in section 3.3. Here we find

convenient to use this normalization for a better comparison with the formulae of [25].

Equations (4.14) and (4.15) can be generalized to the case of a multiply wound Wilson

loop. In particular, its expectation value corresponds to the average of the single-body

operator

Ôm(ν) = e
m
k

(q̂+ ν p̂) (4.16)

4.3 A peculiarity of the matrix model

We conclude this section by highlighting a peculiar property of the matrix model aver-

age (4.1), valid for the ABJM theory (N1 = N2 ≡ N). Precisely, we claim that its real

part is independent of ν

∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

)
= ∂ν Re (〈WB(ν)〉ν) = 0 for N1 = N2 (4.17)

This property can be proven as follows. We consider the Wilson loop expectation value

as in (4.14), after the application of the Cauchy identity. We take the real part of this

expression and its derivative with respect to ν at the level of the integrand, obtaining the
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following expression

∂ν Re (〈WB(ν)〉ν) ∝
∑
σ∈SN

(−1)σ
∫

dyN

πNkN
1∏N

a=1 cosh ya
2 cosh

ya−yσ(a)

2k

×
N∑
c=1

4π

k

sin 2πν
k cosh2 yc−yσ(c)

2k sinh
yc−yσ(c)

2k e
yc+yσ(c)

2k(
cos 2πν

k + cosh
yc−yσ(c)

k

)2 (4.18)

Next we work directly on the integrand and prove that (4.17) holds before any integration.

The permutations in the symmetric group SN can be divided into those which are

idempotent {σ ∈ SN |σ2 = 1} and those which are not. The former are those constructed

as products of cycles of maximal length 2, whereas the latter contain at least one cycle of

length greater than 2. For permutations belonging to the first group we find that the sum

N∑
c=1

4π

k

sin 2πν
k cosh2 yc−yσ(c)

2k sinh
yc−yσ(c)

2k e
yc+yσ(c)

2k(
cos 2πν

k + cosh
yc−yσ(c)

k

)2 = 0 σ2 = 1 (4.19)

vanishes identically since the summand is antisymmetric with respect to the exchange

yc ↔ yσ(c). In fact, due to this property a given term c = c̄ in the sum either vanishes if

σ(c̄) = c̄ or, if σ(c̄) = c̄′, it will be canceled by an opposite contribution for c = c̄′.

Next we consider permutations which are not idempotent, so that they do not coincide

with their inverse. This set can be divided into pairs (σ, σ−1), which have the same signature

and span the whole set. They give rise to the same factor
∏N
a=1 cosh

ya−yσ(a)

2k in (4.18).

Hence, restricting the sum in (4.18) to such a pair of permutations, we can focus on the

two contributions

N∑
c=1

cosh2 yc−yσ(c)

2k sinh
yc−yσ(c)

2k e
yc+yσ(c)

2k(
cos 2πν

k + cosh
yc−yσ(c)

k

)2 +
N∑
c=1

cosh2 yc−yσ−1(c)

2k sinh
yc−yσ−1(c)

2k e
yc+yσ−1(c)

2k(
cos 2πν

k + cosh
yc−yσ−1(c)

k

)2

(4.20)

and choose a particular term c = c̄ in the first sum for which σ(c̄) = c̄′. Then, a term

exists in the second sum corresponding to the eigenvalue yc̄′ . The sum of these two pieces

vanishes

cosh2 yc̄−yc̄′
2k sinh

yc̄−yc̄′
2k e

yc̄+yc̄′
2k(

cos 2πν
k + cosh

yc̄−yc̄′
k

)2 +
cosh2 yc̄′−yσ−1(c̄′)

2k sinh
yc̄′−yσ−1(c̄′)

2k e
yc̄′+yσ−1(c̄′)

2k(
cos 2πν

k + cosh
yc̄′−yσ−1(c̄′)

k

)2 = 0 (4.21)

since, by construction, σ−1(c̄′) = c̄ and consequently the latter term is equal and opposite

to the former. Such a cancellation extends pairwise to all the terms in the sum (4.20),

and therefore the terms in (4.18) associated to a given permutation and its inverse cancel

completely. This argument in turn extends to all permutations which are not idempotent.

Consequently, the whole expression (4.18) evaluates to zero, as claimed.

As an important corollary of identities (2.29) and (4.17) we find that

∂m log
(
〈Wm

B (1)〉1 + 〈Ŵm
B (1)〉1

)∣∣∣
m=1

= 2 ∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

)∣∣∣
ν=1

=
N1=N2

0

(4.22)
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This proves a property of both the multiply wound 1/6-BPS average and the latitude

Wilson loops, which in particular allowed the steps leading to (2.33).

5 The matrix model at strong coupling

For the ABJM slice N1 = N2 = N , in this section we provide the expansion of the matrix

model average (4.14) that computes the expectation value of the bosonic latitude Wilson

loop at strong coupling. Automatically, this also provides the average of the fermionic

operator at strong coupling, via the cohomological equivalence (2.21).

For simplicity, we confine the treatment to single winding operators (m = 1), and

point out how to extend the calculation to the more general case of multiply wound Wilson

loops, if need be. We work at large N but we do not restrict to the planar limit. We adopt

the Fermi gas approach reviewed in the previous section, as this method has the virtue

of granting a systematic control on both quantum corrections in the coupling and on the

genus expansion around the large N limit.9

As recalled above, the matrix model (4.14) can be reformulated in terms of a one-

dimensional ideal (non-interacting) quantum gas of particles with Fermi statistics. In this

setting the Chern-Simons level k plays the role of the Planck constant, equation (4.12),

and the number of colors N corresponds to the number of particles. Therefore, large N

is equivalent to the thermodynamic limit of the gas, whereas the ~ expansion encoding

quantum corrections corresponds to an expansion at small k. Consequently, the Fermi gas

approach is suitable for studying the latitude expectation value in the M-theory regime,

N → ∞ and k fixed. We will limit our discussion to perturbative corrections, neglecting

exponentially small contributions, stemming from world-sheet and membrane instantons.

5.1 Thermodynamic limit and quantum corrections

When the number of particles becomes large the canonical partition function (4.8) is hard

to deal with. We then resort to the grand-canonical ensemble with the grand-canonical

partition function defined as

Ξ = 1 +

∞∑
N=1

ZN z
N (5.1)

where z = eµ is the fugacity and µ the chemical potential. Accordingly, the canonical

average for the one-body operator (4.15) is substituted by the grand-canonical average

with Fermi statistics

1

Ξ
〈Ô〉GC =

1

Ξ

∞∑
N=1

〈Ô〉 zN = Tr

(
Ô

eĤ−µ + 1

)
(5.2)

The canonical average is then retrieved by an inverse transform in µ.

9We will stricktly follow the procedure of [25], although it has been argued later [83] that results obtained

there are correct only for winding-one 1/6 BPS Wilson loop, whereas for general winding the authors of [25]

missed higher order corrections in 1/k.
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The large N expansion of the ABJM model can be argued to translate into a large

chemical potential and energy expansion [25, 78]. Resumming the power series from ex-

panding (5.2) in this limit, one obtains [25]

1

Ξ
〈Ô〉GC = π∂µ cscπ∂µ nO(µ) (5.3)

where nO(µ) is the distribution

nO(µ) = Tr
(

Θ(µ− Ĥ) Ô
)

(5.4)

with Θ being the Heaviside function that defines the Fermi surface.

In order to keep track of quantum corrections for the operator average we use a semi-

classical approach and look for a convenient way to expand (5.4) in powers of ~. As

discussed in [25], this is easily accomplished using the phase space formalism of Quantum

Mechanics. This amounts to trading operators with their Wigner transform, according to

AW (q, p) =

∫
dq′
〈
q − q′

2

∣∣∣∣ Â ∣∣∣∣q +
q′

2

〉
eipq

′/~ (5.5)

and operator products with ?-products(
ÂB̂
)
W

= AW exp

[
i~
2

(←−
∂ q
−→
∂ p −

←−
∂ p
−→
∂ q

)]
BW ≡ AW ? BW (5.6)

In this formalism the trace is rewritten as an integral over the (p, q) coordinates

TrÂ =

∫
dp dq

2π~
AW (q, p) (5.7)

Applying the Wigner transform to the one-particle Hamiltonian Ĥ defined in (4.10),

we can expand any operator f(Ĥ) in powers of (Ĥ−HW (q, p)). Its semi-classical expansion

is then obtained by taking the Wigner transform

f(Ĥ)W =
∑
r≥0

1

r!
f (r)(HW )Gr , Gr = (Ĥ −HW (q, p))rW (5.8)

where the so-called Wigner-Kirkwood functions Gr have an ~ expansion of the form

G0 = 1 , G1 = 0 , Gr =
∑

n≥[ r+2
3 ]

~2nG(n)
r r ≥ 2 (5.9)

Applying this formalism to the distribution in (5.4), its semi-classical expansion reads

nO(µ) =

∫
dpdq

2π~

(
Θ (µ−HW )OW +

∑
r>1

(−1)r

r!
δ(r−1) (µ−HW ) Gr OW

)
(5.10)

The value HW (q, p) = µ defines the Fermi surface.
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In our case, from the explicit expression (4.11) of the one-body Hamiltonian we realize

that HW is explicitly given by

e−HW? = e−U(q) ? e−T (p) , U(q) = log
(

2 cosh
q

2

)
, T (p) = log

(
2 cosh

p

2

)
(5.11)

whereas for a generic operator of the form Ôa,b ≡ e(aq̂+bp̂)/k we find

(Oa,b)W (q, p) = e
aq+bp
k (5.12)

Equation (5.10) with entries (5.11) and (5.12) with a = 1, b = ν, are the key ingredients

to obtain the expectation value 〈WB(ν)〉ν at strong coupling from prescription (5.3). We

devote the rest of this section to its explicit evaluation.

5.2 Expansion of Fermi gas at strong coupling

In order to evaluate (5.10) we closely follow the treatment of [25], generalizing the form of

the operator’s Wigner transform as in (5.12).

The first step requires deriving the expression for the grand-canonical partition function

of the Fermi gas. Since by construction this coincides with that of the undeformed case,

we can read it from [25]

Ξ = exp

(
2µ3

3π2k
+

µ

3k
+
µk

24

)
(5.13)

Next, we concentrate on evaluating the occupation number distribution

nOa,b(µ) =

∫
dpdq

2π~
Θ (µ−HW ) e

aq+bp
k +

∑
r≥1

(−1)r

r!

dr−1

dµr−1
δ (µ−HW ) Gr e

aq+bp
k

≡ n(1)
Oa,b

(µ) + n
(2)
Oa,b

(µ) (5.14)

The integrals are over the Fermi region and surface, whose picture is given in figure 2a.

As suggested in [25], it is convenient to divide the Fermi surface into four sectors. The

points where the separation occurs are

p∗ = µ+
i~
8
, q∗ = µ+

i~
8

+O(e−µ) (5.15)

where O(e−µ) stands for exponentially suppressed terms. The logic behind such a separa-

tion is that along the curve bounding the regions, we have that alternatively

|p| > µ or |q| > µ (5.16)

This in turn means that exponentially small corrections in p and q are bounded by expo-

nentially small corrections in µ and hence they can be neglected. Precisely,

in regions I,III: e−|p| < e−µ T (p) ∼ p

2

in regions II,IV: e−|q| < e−µ U(q) ∼ q

2
(5.17)

where the approximations are correct up to exponentially small terms.
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(a) (b)

Figure 2. (a) shows the lines of constant HW in (q, p) space, defining the Fermi surface. In (b) the

Fermi region is divided into 4 areas. The red line has equation p = −ab q and separates the regions

where the exponent of the operator (4.15) is positive or negative, for a given 0 < b ≡ ν < 1 and a = 1.

Due to the invariance of the Hamiltonian under p ↔ q, the different regions can be

obtained from one another by exchanging the canonical coordinates. Upon the insertion

of the Oa,b operator this is equivalent to computing the contribution with the insertion of

Ob,a. Consequently, the idea is to explicitly compute the integration of Oa,b along the curve

in regions I and adding to it the contributions form the other regions obtained by changing

signs and permuting labels. However, this procedure would overcount the contribution

from the square (|q| < q∗, |p| < p∗), which then needs to be subtracted. Naming this extra

contribution n
(bulk)
Oa,b

, we can finally write

nOa,b = nOa,b
∣∣
I,III

+ nOa,b
∣∣
II,IV

− n(bulk)
Oa,b

= nOa,b
∣∣
I,III

+ nOb,a
∣∣
I,III

− n(bulk)
Oa,b

(5.18)

The bulk contribution is easily computed and gives

n
(bulk)
Oa,b

=

∫ q∗

−q∗

∫ p∗

−p∗

dp dq

2π~
e
a q+b p
k =

2 k2 sinh a q∗
k sinh b q∗

k

a b ~π
(5.19)

For the other contributions, we recall that for a = b, e.g. for the 1/6-BPS Wilson loop, the

domain of integration where the operator does not get exponentially suppressed coincides

with regions I and II only and the computation can be limited to those. For a 6= b this

is not necessarily true. In particular, choosing a = 1, b = ν and assuming without loss of

generality that 0 < ν < 1, we expect contributions from region III (see figure 2b) not to

be entirely exponentially suppressed.

Working in regions I and III we can use the approximated expression for T (p) in (5.17).

Following the steps of [25], the first term in (5.14) can be integrated in p to get an integral

along the Fermi surface

n
(1)
Oa,b

(µ)
∣∣
I,III

=
k

b

∫ q∗

−q∗

dq

2π~
e
aq
k

(
e
bp(µ,q)
k − e−

bp(µ,q)
k

)
(5.20)
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where

p(µ, q) = 2µ− (2HW − |p|) (5.21)

This expression is indeed p-independent as a consequence of (5.17).

Solving for the δ function in the second term of (5.14), and adding it to (5.20) we

obtain the resummed expression

nOa,b(µ)
∣∣
I,III

=
k

2π~ b

∫ q∗

−q∗
dq

(
e

2bµ
k e

aq+b|p|
k e

− 2b
k
HW

? − e−
2bµ
k e

aq−b|p|
k e

2b
k
HW

?

)
(5.22)

where we have used the definition of the Wigner-Kirkwood corrections (5.8).

This object has been computed in [25] using the reduced Hamiltonian for regions I, III

e−tHW? = exp

(
− t

2
|p|+ it ~

8
− t ~

4π
log
(

2 sinh
q

k

))
(5.23)

Plugging (5.23) into (5.22) the complete expression for nOa,b in region I reads

nOa,b
∣∣
I

=
k2

2π~ b
e

2bµ
k ib Ia,b (5.24)

where

Ia,b ≡
1

k

∫ q∗

−q∗
dq

e
aq
k

(2 sinh q
k )b

(5.25)

The analogous expression for region III is obtained from (5.24) by sending b→ −b.
One can now perform the change of variables u = exp (q/k) to put the integral in the

form

Ia,b ∼ Ĩa,b =

∫ u∗

0
du

ua−1

(u− u−1)b
(5.26)

where the lower limit of integration has been lowered down to 0 at the affordable price of

introducing spurious exponentially small corrections that we are neglecting anyway.

Finally, the integral Ĩa,b can be evaluated in full generality in terms of a hypergeometric

function

Ĩa,b =
(−1)−b ua+b

∗ 2F1

(
b, a+b

2 ; 1
2(a+ b+ 2);u2

∗
)

a+ b
, u∗ ∼ e

µ
k (5.27)

Leading exponential asymptotics. We now perform the large µ asymptotics of (5.27),

discarding exponentially subleading contributions.

To this end we first invert the arguments of the hypergeometric function above using

the following general identity

2F1 (α, β; γ; z) =
(−z)−α Γ(γ) Γ(β − α) 2F1

(
α, α− γ + 1;α− β + 1; 1

z

)
Γ(β) Γ(γ − α)

+
(−z)−β Γ(γ) Γ(α− β) 2F1

(
β, β − γ + 1;−α+ β + 1; 1

z

)
Γ(α) Γ(γ − β)

(5.28)

and then expand each term in a power series. Since u∗ is exponentially large, the first term

in the expansion is sufficient for retaining only the exponentially leading contributions.

– 40 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
0

We will restrict here to the cases of interest, which are Ĩ1,ν , Ĩν,1 and Ĩ1,−ν with 0 <

ν < 1, although the same analysis could be carried out for generic a and b. In particular,

this would allow to take into account the case of multiply wound latitude Wilson loops, for

which we should set a = m and b = mν.

Restricting to the single winding operator, the large µ asymptotics in the various

regions reads

region I: nO1,ν

∣∣
I
∼ −(−1)

ν+1
4 k2 e

µ(ν+1)
k

2π~ (ν − 1)ν
+
i k2 Γ

(
ν−1

2

)
Γ
(
ν+3

2

)
e

2µν
k

2π~Γ(ν + 2)

region II: nO1,ν

∣∣
II
∼
k2 e

µ
k

(
2 (−1)

ν+1
4 e

µν
k + π (ν − 1)e

µ
k

(
1 + i tan πν

2

))
4π~ (ν − 1)

region III: nO1,ν

∣∣
III
∼ −k

2 e−
µ(ν−1)

k
− iπ (ν−1)

4

2π~ ν(ν + 1)
(5.29)

We note that the contribution from region III can be neglected, even though it is not

exponentially suppressed (in the sense that it does not vanish exponentially for large µ). In

fact, compared to the contributions from the other regions it is subdominant and bounded

from above by the subleading exponential eµ/k in the whole 0 < ν < 1 range. Moreover, it

possesses a different behavior in the ν → 1 limit.

Summing up the contributions from regions I and II and subtracting the asymptotic

expansion of n
(bulk)
O1,ν

(see equation (5.19)), we obtain

n
(bulk)
O1,ν

∼ k2 e
µ(ν+1)
k

+
iπ(ν+1)

4

2π~ ν
(5.30)

where we have neglected exponentially small corrections. The exponent e
µ(ν+1)
k from n

(bulk)
O1,ν

cancels against a similar contribution in nO1,ν

∣∣
I
, so removing unexpected singularities at

ν → 0. The final result reads

nO1,ν =

k2

(
π e

2µ
k

(
1 + i tan πν

2

)
+

iΓ( ν−1
2 )Γ( ν+1

2 )e
2µν
k

Γ(ν+1)

)
4π ~

(5.31)

This expression is well-defined in the whole physical region 0 ≤ ν ≤ 1. In fact, for ν → 0

we explicitly obtain

nO1,ν =
ν→0

k2 e
2µ
k

4 ~
(5.32)

after discarding a constant term in µ arising from the first piece in (5.31).

Although the two terms in (5.31) are separately singular for ν → 1, the singularities

cancel, leaving the finite remainder

nO1,ν =
ν→1

k e
2µ
k (4i µ+ (π − 2i)k)

4π ~
(5.33)

This expression coincides with the result of [25] for the singly wound undeformed 1/6-BPS

operator.
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Genus expansion. Having computed the asymptotic expansion of the nO1,ν distribution,

using prescription (5.3) we can finally evaluate the expansion at strong coupling of 〈WB(ν)〉
at framing ν

〈WB(ν)〉ν =
1

2πiZ

∫
dµ e−Nµ 〈O1,ν〉GC (5.34)

through the grand-canonical average (setting ~ = 2πk)

1

Ξ
〈O1,ν〉GC =

1

4π

(
π e

2µ
k csc

2π

k

(
1 + i tan

π ν

2

)
+
i ν Γ

(
ν−1

2

)
Γ
(
ν+1

2

)
e

2µν
k csc

(
2π ν
k

)
Γ(ν + 1)

)
(5.35)

with Ξ given in (5.13). The result can be expressed in terms of Airy functions as in [25]10

〈WB(ν)〉ν =
1

8π2

2π2 csc
2π

k

(
1 + i tan

πν

2

) Ai
((

2
π2k

)−1/3 (
N − k

24 −
7
3k

))
Ai
((

2
π2k

)−1/3 (
N − k

24 −
1
3k

))
+2 i π ν

Γ
(
ν−1

2

)
Γ
(
ν+1

2

)
Γ(ν + 1)

csc
2πν

k

Ai
((

2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

))
Ai
((

2
π2k

)−1/3 (
N − k

24 −
1
3k

))
 (5.36)

As in the case of the m-winding 1/6 BPS Wilson loop computed in [25], this result is

missing 1/k corrections. In fact, an alternative derivation of this equation [84] reveals that

the coefficient 2 i π ν
Γ( ν−1

2 ) Γ( ν+1
2 )

Γ(ν+1) in the second line should be modified and would contain

a non-trivial dependence on k.11

Introducing the string coupling

gs =
2πi

k
(5.37)

we can now expand (5.36) at strong coupling and in the genus series

〈WB(ν)〉ν =
∑
g

g2g−1
s 〈WB(ν)〉ν

∣∣
g

(5.38)

While gs > 0 terms will be not reliable due to the subtlety mentioned above, we can safely

compute the genus-zero term. To this end, it is convenient to define the new variable κ

throught the identity
N

k
=

log2 κ

2π2
+

1

24
+O

(
κ−2

)
(5.39)

In terms of this variable the genus-zero contribution reads

〈WB(ν)〉ν
∣∣
g=0

=
−κν Γ

(
ν−1

2

)
Γ
(
ν+1

2

)
+ i π κ

(
1 + i tan πν

2

)
Γ(ν + 1)

4π Γ(ν + 1)
(5.40)

To conclude, we mention that by taking the complex conjugate of these expression one

obtains the genus-zero contribution for the bosonic Wilson loop 〈ŴB(ν)〉ν corresponding

to the second gauge group of the ABJM theory.

10We recall that here the normalization of the operator has been chosen as in [25] and differs by a factor

N from that used at weak coupling in section 3.
11We are grateful to Kazumi Okuyama for sharing with us his results.
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The fermionic operator. As already discussed, once we know the expectation values for

the bosonic latitude Wilson loops we can recover that of the fermionic operator thanks to

the identity (2.21). At strong coupling, the cohomological equivalence can be implemented

already at the stage of the occupation number distribution. Its fermionic version then reads

nFO1,ν
= −

k2 2−ν−2 Γ
(
−ν

2

)
e

2µν
k

√
π Γ
(

3−ν
2

)
~

(5.41)

This is the only surviving ν-exponential behavior, due to an unforeseen cancellation.

Following the steps described above, we obtain the expression of the expectation value in

terms of Airy functions

〈WF (ν)〉ν = −
ν Γ
(
−ν

2

)
csc
(

2πν
k

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

))
2ν+2

√
π Γ
(

3−ν
2

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
1
3k

)) (5.42)

and its genus expansion. The first term reads

〈WF (ν)〉ν
∣∣
g=0

= −i
2−ν−2 κν Γ

(
−ν

2

)
√
π Γ
(

3
2 −

ν
2

) (5.43)

while higher genus contributions would be still affected by the lack of 1/k corrections

in (5.42), as inherited from the bosonic result.

As already mentioned in section 2, in this case the ν → 0 limit is ill-defined, due to

the normalization factor R = 1/(e−
iπν
2 − e

iπν
2 ) that drives the limit to infinity, much alike

what happens for the 1/2-BPS operator at even winding numbers. A sensible result at

ν = 0 can be obtained by removing the R factor and replacing it with 1.

As a last comment, we note that taking the ν → 0 limit at the level of the Airy

functions allows to derive the following curious relation valid at strong coupling

〈WB(0)〉0 = − i k
4π

+ 〈WF (1)〉1 (5.44)

between the singly wound bosonic latitude Wilson loop at ν = 0 and framing zero, and the

fermionic 1/2-BPS Wilson loop at framing one.

5.3 Comparison with the string prediction

Classical string configurations that are dual to the latitude operators have been discussed

in [22].

The fermionic operator maps to a type IIA string configuration in the AdS4 × CP3

background, whose endpoints are not fixed in the internal space, but rather move along a

circle in CP3. This accounts for the non-trivial profile of the matter couplings (2.7) arising

in the field theoretical definition of the Wilson loop. The semi-classical analysis of [22]

reveals that the leading exponential behavior of such a configuration scales according to

〈WF (ν)〉 ∼ eπ ν
√

2λ , λ =
N

k
(5.45)

– 43 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
0

Expansion (5.43) for the matrix model at strong coupling remarkably agrees with this

string prediction, thus providing a further non-trivial test of the correctness of our proposal.

Beyond that, result (5.43) predicts the precise normalization of this exponential as well as

its quantum corrections, which call for further string theory checks.

For the bosonic latitude operator no precise dual string configuration has been de-

termined yet and therefore our findings constitute a brand new prediction, begging for a

string theory confirmation. We remark that in the undeformed case the ratio between the

bosonic and fermionic operators is simply proportional to
√
λ, which has been interpreted

as the volume of CP1 inside CP3 [21], in agreement with the proposed interpretation of

the 1/6-BPS Wilson loop as a string smeared over that cycle [17]. For the latitude opera-

tor, instead, the bosonic expectation value displays a more complicated structure with two

exponential behaviors (see equation (5.40)), potentially suggesting that the smearing over

CP1 interpretation does not carry through this case. This is in line with the comments

in [22], which seem to rule out the possibility to describe the bosonic latitude through a

simple geometric smearing in the internal space.

6 A conjecture for B1/2 in the ABJ theory

In this section we discuss a possible generalization of the Bremsstrahlung functions in (2.24)

and (2.25) to the case of U(N1)k ×U(N2)−k ABJ theory.

In general, for N1 6= N2 less is known about the B-functions compared to the N1 =

N2 case. Perturbative results for all the Bremsstrahlung functions exist from a direct

evaluation of the corresponding cusped Wilson loop. Based on the two-loop result, in [38]

it was argued that in the ABJ case the cusped Wilson loop has a double-exponentiation

structure. A different exponentiation structure still involving two terms has been further

derived in [85] by resumming ladder diagrams to all orders. In particular, the result

of [38] seems to point towards a non-trivial B1/2 at first order, while having a two-loop

vanishing contribution from both the exponents. It turns out instead, that the Bϕ
1/6 and

Bθ
1/6 expansions start at order two in the couplings.

In [39, 40] the evaluation of Bθ
1/6 has been pushed to four loops by computing the

corresponding cusped bosonic Wilson loop at that order. The remarkable output is that

the result

Bθ
1/6 =

N1N2

4k2
− π2

24k4

(
5N2

1N
2
2 +N1N

3
2

)
+O(k−6) (6.1)

coincides with 1/2 a putative result for Bϕ
1/6 obtained by generalizing prescription (2.26)

to the m-winding Wilson loop in ABJ whose expansion up to eighth order can be found

in [33]. This property, although tested only at few perturbative orders, points towards the

validity of identity (2.28) at any loop order also for N1 6= N2, and supports the conjecture

that the general prescriptions (2.26), (2.27) hold also in the ABJ theory.

In fact, if we trust our matrix model as the correct prescription for computing latitude

Wilson loops, we are guaranteed by construction that identity (2.29) is valid also for the

ABJ theory. This identity, together with (2.28), conspires to sustain the conjecture that

prescriptions (2.26), (2.27) have an obvious generalization to the ABJ case.
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Therefore, supported by these reassuring facts, we use the prescription in (2.27) to

make a prediction for B1/2 in the N1 6= N2 case. Inserting there the explicit matrix model

expansion at weak coupling (here also including the fifth order term) we find

B1/2
?
=

N1N2

4k (N1 +N2)
− π2N1N2 (N1N2 − 3)

24k3 (N1 +N2)

−
π6N1N2

(
7N3

1N2 − 62N2
2N

2
1 + 7N1N

3
2 + 120 (N1N2 − 1)

)
360k5 (N1 +N2)

+O
(
k−7

)
(6.2)

as a sensible proposal for the fermionic Bremsstrahlung function in the ABJ theory.

There are of course some non-trivial aspects in this proposal that should be better

understood. First of all, while the vanishing of the two-loop contribution is consistent with

the result of [38], the one-loop term does not coincide and seems to suggest a different expo-

nentiation structure. Moreover, the prescription of taking the modulus seems to be crucial

to recover the vanishing of the second order term, a fact that needs a deeper understanding.

Further perturbative data, obtained from generalizing the three-loop computation

of [27] to the ABJ case, would surely give more insights on the exponentiation proce-

dure of the cusped Wilson loop, leading possibly to a check of conjecture (6.2). We leave

this open problem for the future.
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A ABJ(M) theory

In this section we summarize basic notions on the quiver U(N1)k× U(N2)−k ABJ(M)

theory. Its field content includes two gauge fields (Aµ)i
j and (Âµ)̂i

ĵ belonging respectively

to the adjoint of U(N1) and U(N2), and matter scalar fields (CI)i
ĵ and (C̄I )̂i

j plus

their fermionic superpartners (ψI)i
ĵ and (ψ̄I )̂i

j . The fields (CI , ψ̄
I) transform in the

(N1, N̄2) of the gauge group (small latin indices) while the pair (C̄I , ψI) belongs to the

representation (N̄1,N2). Index I = 1, 2, 3, 4 labels the fundamental representation of the

SU(4) R-symmetry group.

After gauge fixing, the action reads

S = SCS

∣∣
g.f.

+ Smat + Sbos
pot + Sferm

pot (A.1)
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where

SCS

∣∣
g.f.

=
k

4π

∫
d3x εµνρ

{
iTr

(
Âµ∂νÂρ +

2

3
iÂµÂνÂρ

)
−iTr

(
Aµ∂νAρ +

2

3
iAµAνAρ

)
+ Tr

[
1

ξ
(∂µA

µ)2 − 1

ξ
(∂µÂ

µ)2 + ∂µc̄D
µc− ∂µ¯̂cDµĉ

]}
(A.2a)

Smat =

∫
d3xTr

[
DµCID

µC̄I − iΨ̄IγµDµΨI

]
(A.2b)

Sbos
pot = −4π2

3k2

∫
d3xTr

[
CIC̄

ICJ C̄
JCKC̄

K + C̄ICIC̄
JCJ C̄

KCK

+ 4CIC̄
JCKC̄

ICJ C̄
K − 6CIC̄

JCJ C̄
ICKC̄

K
]

(A.2c)

Sferm
pot = −2πi

k

∫
d3xTr

[
C̄ICIΨJΨ̄J − CIC̄IΨ̄JΨJ + 2CIC̄

JΨ̄IΨJ

− 2C̄ICJΨIΨ̄
J − εIJKLC̄IΨ̄J C̄KΨ̄L + εIJKLCIΨJCKΨL

]
(A.2d)

with (c̄, c) and (¯̂c, ĉ) being the ghosts. We use spinor and group conventions of [27]. The

invariant SU(4) ε-tensors are defined as ε1234 = ε1234 = 1 and the covariant derivatives are

given by

DµCI = ∂µCI + iAµCI − iCIÂµ, DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I

DµΨ̄I = ∂µΨ̄I + iAµΨ̄I − iΨ̄IÂµ, DµΨI = ∂µΨI − iΨIAµ + iÂµΨI (A.3)

A.1 Color conventions

The U(N) generators are defined as TA = (T 0, T a), where T 0 = 1√
N
1 and T a (a =

1, . . . , N2−1) are an orthonormal set of traceless N×N hermitian matrices. The generators

are normalized as

Tr(TATB) = δAB (A.4)

The structure constant are then defined by

[TA, TB] = ifABCT
C (A.5)

We perform computations associating to every generator TA in the given representation R

of U(N1) a matrix R j
i with indices i, j = 1 . . . N1 with commutation relation

[R i2
i1

, R i4
i3

] = δ i2
i3

R i4
i1
− δ i4

i1
R i2
i3

(A.6)

in such a way that the most generic Casimir invariant reads

R i2
i1

R i3
i2

. . . R i1
ip

= Cp(R) 1dim(R) (A.7)

For the rank n totally symmetric and totally antisymmetric representations they evaluate

Cp(Sn) = n(N1 + n− 1)p−1

Cp(An) = n(N1 − n+ 1)p−1 (A.8)

For Hook representations with a total of m boxes and m − s boxes in the first row the

quadratic Casimir invariants read

C2(m,m− s) = mN1 +m(m− 2s− 1) (A.9)
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B Feynman rules

We use the Fourier transform definition∫
d3−2εp

(2π)3−2ε

pµ

(p2)s
eip·(x−y) =

Γ(3
2 − s− ε)

4sπ3/2−εΓ(s)

(
− i∂µx

) 1

(x− y)2(3/2−s−ε) (B.1)

In euclidean space we define the functional generator as Z ∼
∫
e−S , with action (A.1).

This gives rise to the following Feynman rules

• Vector propagators in Landau gauge

〈(Aµ)i
j(x)(Aν)k

`(y)〉(0) = δ`i δ
j
k

(
2πi

k

)
Γ(3

2 − ε)
2π

3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= δ`i δ
j
k

(
2π

k

)
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y)

〈(Âµ)̂i
ĵ(x)(Âν)k̂

ˆ̀
(y)〉(0) = −δ ˆ̀

î
δĵ
k̂

(
2πi

k

)
Γ(3

2 − ε)
2π

3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= −δ ˆ̀

î
δĵ
k̂

(
2π

k

)
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y) (B.2)

• Scalar propagator

〈(CI)iĵ(x)(C̄J)k̂
l( y)〉(0) = δJI δ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

[(x− y)2]
1
2
−ε

= δJI δ
l
iδ
ĵ

k̂

∫
dnp

(2π)n
eip(x−y)

p2
(B.3)

• Fermion propagator

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂(y)〉(0) = i δJI δ
l̂
î
δjk

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ε

= δJI δ
l̂
î
δjk

∫
dnp

(2π)n
(γµ)αβ pµ

p2
eip(x−y) (B.4)

• Gauge cubic vertex

i
k

12π
εµνρ

∫
d3x fabcAaµA

b
νA

c
ρ (B.5)

• Gauge-fermion cubic vertex

−
∫
d3xTr

[
Ψ̄IγµΨIAµ − Ψ̄IγµÂµΨI

]
(B.6)
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The one loop gauge propagators are given by

〈(Aµ)i
j(x)(Aν)k

`(y)〉(1) = δ`i δ
j
k

(
2π

k

)2

N2
Γ2(1

2 − ε)
4π3−2ε

[
δµν

[(x− y)2]1−2ε
− ∂µ∂ν

[(x− y)2]2ε

4ε(1 + 2ε)

]
= δ`i δ

j
k

(
2π

k

)2

N2
Γ2(1

2 − ε)Γ(1
2 + ε)

Γ(1− 2ε)21−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν −

pµpν
p2

)
(B.7a)

〈(Âµ)̂i
ĵ(x)(Âν)k̂

ˆ̀
(y)〉(1) = δ

ˆ̀

î
δĵ
k̂

(
2π

k

)2

N1
Γ2(1

2 − ε)
4π3−2ε

[
δµν

[(x− y)2]1−2ε
− ∂µ∂ν

[(x− y)2]2ε

4ε(1 + 2ε)

]
= δ

ˆ̀

î
δĵ
k̂

(
2π

k

)2

N1
Γ2(1

2 − ε)Γ(1
2 + ε)

Γ(1− 2ε)21−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν −

pµpν
p2

)
(B.7b)

The one-loop fermion propagator reads

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂(y)〉(1) = −i
(

2π

k

)
δJI δ

l̂
î
δjk δ

α
β (N1 −N2)

Γ2(1
2 − ε)

16π3−2ε

1

[(x− y)2]1−2ε

= −
(

2πi

k

)
δJI δ

l̂
î
δjk δ

α
β (N1 −N2)

Γ2(1
2 − ε)Γ(1

2 + ε)

Γ(1− 2ε)23−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε
(B.8)

Being proportional to the difference (N1 −N2), it vanishes in the ABJM limit.

B.1 Gauge two-point function at two loops

In table 1 we list the non-vanishing diagrams contributing to the gluon two-loop self-energy

and their properties. The color factors are relative to the diagram already inserted into

the Wilson loop. The values up to order ε0 are for the two-loop diagram only and a factor

e2γEε is understood.

B.2 Couplings to scalars

Up to three loop order the computation of the latitude expectation value involves the

following traces of M matrices

TrM(τ) = 0 (B.9)

Tr(M(τ1)M(τ2)) = 4

(
1+(ν2−1)sin2 τ1−τ2

2

)
(B.10)

Tr(M(τ1)M(τ2)M(τ3)) =−2iν
(
ν2−1

)
(sin(τ1−τ2)−sin(τ1−τ3)+sin(τ2−τ3)) (B.11)

C Weak coupling expansion of the un-deformed matrix model

In this section we expand the ABJ(M) matrix model

Z =

∫ N1∏
a=1

dλa e
iπkλ2

a

N2∏
b=1

dµb e
−iπkµ2

b

N1∏
a<b

sinh2 π(λa − λb)
N2∏
a<b

sinh2 π(µa − µb)

N1∏
a=1

N2∏
b=1

cosh2 π(λa − µb)

(C.1)
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color O(ε0)

(a) N2

(
N2C2(R)− C2

1 (R)
)

4π
(
π2 − 8

)
− 16π

3ε

(b) N2

(
N2C2(R)− C2

1 (R)
)

4π
(
π2 − 8

)
− 16π

3ε

(c) N2

(
N1C2(R)− C2

1 (R)
)

16π
3ε − 4π

(
π2 − 8

)

(d) N2

(
N1C2(R)− C2

1 (R)
)

2π
(
π2 − 8

)
− 8π

3ε

(e) 2N2

(
− (N1 − 2N2)C2(R)− C2

1 (R)
)

8π
3ε + 16π

(f) N2

(
N1C2(R)− C2

1 (R)
)

16π
3ε + 16π

(g) N2 (N2 −N1)C2(R) 16π
3ε + 32π

(h) N2

(
N2C2(R)− C2

1 (R)
)

−16π3

Table 1. Table of non-vanishing self-energy diagrams with matter contributions.

at weak coupling and compute the expectation value of 1/6-BPS Wilson loops with m

windings up to the fourth order, for generic N1 and N2. This is performed by observing

that every matrix model correlator with a total power of 2n eigenvalues scales as k−n.

Therefore one can expand in power series the hyperbolic functions in the integrand and the

exponential accounting for the operator insertion. This boils down to computing correlators

in a Gaussian matrix model and for the purpose of the present expansion those listed in

the appendices of [39] are sufficient.

We evaluate the Wilson loop in higher rank totally symmetric and antisymmetric rep-

resentations of U(N1) using prescriptions (3.26). For the three lowest rank representations,

up to four loops, we find for instance

〈Wm
B 〉(k,S1) = 1+

iπm2N1

k
−
π2m2

(
m2
(
2N2

1 +1
)

+2N2
1 −6N1N2−2

)
6k2

− iπ
3m2

18k3

(
m4
(
N3

1 +2N1

)
+m2

(
4N3

1 −12N2N
2
1 −4N1−6N2

)
+N3

1 +9N1N
2
2 −N1−6N2

1N2−3N2

)
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+
π4m2

360k4

(
m6
(
2N4

1 +10N2
1 +3

)
+20m4

(
N4

1 −3N2N
3
1 −6N2N1−1

)
+2m2

(
13N4

1 −75N2N
3
1 +5

(
24N2

2 −5
)
N2

1 +15N2N1 +60N2
2 +12

)
−60N2

(
N2N

2
1 +
(
N2

2 −1
)
N1−N2

))
+O

(
k−5

)
(C.2)

〈Wm
B 〉(k,S2) = 1+

2iπm2 (N1 +1)

k

−
π2m2

(
m2
(
5N2

1 +11N1 +8
)

+2
(
N2

1 −3N2N1 +N1−3N2−2
))

3k2

− iπ
3m2

9k3

(
m4
(
7N3

1 +25N2
1 +40N1 +24

)
+2m2

(
5N3

1 +(11−15N2)N2
1

−(33N2 +4)N1−12(2N2 +1))+N3
1 +N2

1 (1−6N2)+3N2 (3N2−2)

+N1

(
9N2

2 −6N2−2
))

+
1

90k4
π4m2

(
m6
(
21N4

1 +107N3
1 +278N2

1 +362N1 +192
)

+10m4
(
7N4

1 +(25−21N2)N3
1 +(20−75N2)N2

1 −20(6N2 +1)N1−8(9N2 +4)
)

+m2
(
33N4

1 +(71−195N2)N3
1 +
(
300N2

2 −405N2−76
)
N2

1

+2
(
330N2

2 −45N2−62
)
N1 +6

(
80N2

2 +35N2 +16
))

−30N2

(
(N1 +1)N2

2 +
(
N2

1 +N1−2
)
N2−2

))
+O

(
k−5

)
(C.3)

〈Wm
B 〉(k,S3) = 1+

3iπm2 (N1 +2)

k

−
π2m2

(
8m2N2

1 +34m2N1 +39m2 +2N2
1 +4N1−6N1N2−12N2−6

)
2k2

− 1

6k3
iπ3m2

(
m4
(
19N3

1 +128N2
1 +312N1 +270

)
+2m2

(
8N3

1 +(34−24N2)N2
1

−6(17N2−2)N1−9(13N2 +6))+N3
1 +N2

1 (2−6N2)+9N2 (2N2−1)

+3N1

(
3N2

2 −4N2−1
))

+
1

120k4
π4m2

(
m6
(
202N4

1 +1908N3
1 +7370N2

1 +13524N1 +9801
)

+20m4
(
19N4

1 +(128−57N2)N3
1 −48(8N2−5)N2

1 −36(26N2 +1)N1

−27(30N2 +13))

+2m2
(
53N4

1 +(222−315N2)N3
1 +5

(
96N2

2 −258N2−7
)
N2

1

+3
(
680N2

2 −325N2−188
)
N1 +12

(
195N2

2 +80N2 +27
))

−60N2

(
N2N

2
1 +(N2 +1)2N1 +2N2

2 −3N2−4
))

+O
(
k−5

)
(C.4)

〈Wm
B 〉(k,A2) = 1+

2iπm2 (N1−1)

k

−
π2m2

(
m2
(
5N2

1 −11N1 +8
)

+2
(
N2

1 −(3N2 +1)N1 +3N2−2
))

3k2

− iπ
3m2

9k3

(
m4
(
7N3

1 −25N2
1 +40N1−24

)
+2m2

(
5N3

1 −(15N2 +11)N2
1 +(33N2−4)N1−24N2 +12

)
+N3

1 −3N2 (3N2 +2)

−N2
1 (6N2 +1)+N1

(
9N2

2 +6N2−2
))
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+
1

90k4
π4m2

(
m6
(
21N4

1 −107N3
1 +278N2

1 −362N1 +192
)

+10m4
(
7N4

1 −(21N2 +25)N3
1 +5(15N2 +4)N2

1 −20(6N2−1)N1 +8(9N2−4)
)

+m2
(
33N4

1 −(195N2 +71)N3
1 +
(
300N2

2 +405N2−76
)
N2

1

−2
(
330N2

2 +45N2−62
)
N1 +6

(
80N2

2 −35N2 +16
))

−30N2

(
(N1−1)N2

2 +
(
N2

1 −N1−2
)
N2 +2

))
+O

(
k−5

)
(C.5)

〈Wm
B 〉(k,A3) = 1+

3iπm2 (N1−2)

k

−
π2m2

(
m2
(
8N2

1 −34N1 +39
)

+2
(
N2

1 −(3N2 +2)N1 +6N2−3
))

2k2

− 1

6k3
iπ3m2

(
m4
(
19N3

1 −128N2
1 +312N1−270

)
+2m2

(
8N3

1 −2(12N2 +17)N2
1 +6(17N2 +2)N1−117N2 +54

)
+N3

1 −9N2 (2N2 +1)−2N2
1 (3N2 +1)+3N1

(
3N2

2 +4N2−1
))

+
1

120k4
π4m2

(
m6
(
202N4

1 −1908N3
1 +7370N2

1 −13524N1 +9801
)

+20m4
(
19N4

1 −(57N2 +128)N3
1 +48(8N2 +5)N2

1

+(36−936N2)N1 +810N2−351)+2m2
(
53N4

1 −3(105N2 +74)N3
1

+5
(
96N2

2 +258N2−7
)
N2

1 −3
(
680N2

2 +325N2−188
)
N1

+12
(
195N2

2 −80N2 +27
))
−60N2

(
N2N

2
1 +(N2−1)2N1−2N2

2 −3N2 +4
))

+O
(
k−5

)
(C.6)

We can compare these results with the general three-loop expression derived from (3.24) by

setting ν = 1, and framing f = 1 as required by comparison with localization predictions

〈Wm
B (1)〉1 = 1 +

iπm2C2(R)

k

+
π2m2

6k2

(
C2(R)

(
−3m2C2(R) +

(
m2 − 2

)
N1 + 6N2

)
−
(
m2 − 2

)
C2

1 (R)
)

+
iπ3m2

18k3

[
− 3m4C3

2 (R) + 3m2C2
2 (R)

((
m2 − 2

)
N1 + 6N2

)
+ C2

1 (R)
((
m2 − 1

)2
N1 + 3

(
2m2 + 1

)
N2

)
− C2(R)

(
3m2

(
m2 − 2

)
C2

1 (R) +
((
m2 − 1

)
N1 + 3N2

)2) ]
+O

(
k−4

)
(C.7)

Selecting R = S1, S2, S3, A2 and A3 and using relations (A.8) we find perfect agreement

with (C.2)–(C.6).

D Bθ
1/6 at four loops for generic representations

In this section we provide the details of the computation of the θ-Bremsstrahlung func-

tion up to four loops, for generic representations of the U(N1) gauge group. Most of the

computation has already been addressed in [39, 40], to which we refer for a more complete

discussion. There the cusp has been evaluated for the fundamental representation of the
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Figure 3. List of planar diagrams contributing to the four-loop θ-Bremsstrahlung function. Gray

bullets stand for one-loop corrections to the gauge propagator. The gray box collects the two-loop

corrections to the bi-scalar two-point function. Here solid lines stand for scalars and dashed lines

for fermions.

gauge group. Here we extend it to general representations. This is aimed at verifying that

the conjecture for the exact value of Bθ
1/6 (cfr. equation (2.29))

Bθ
1/6 =

1

8π2
∂m |〈Wm

B (1)〉|
∣∣∣∣
m=1

(D.1)

put forward in [39, 40] for operators in the fundamental representation, actually holds for

any representation of the gauge group.

We compute the θ-Bremsstrahlung function from a direct evaluation of the cusped 1/6-

BPS Wilson loop using the definition (2.25), setting ϕ = 0. This amounts to computing

the operator along a straight line, but at a non-trivial internal θ angle.

We focus only on graphs with an explicit dependence on θ. These are depicted in

figures 3 and 4. After evaluating the algebra of these diagrams using the Feynman rules

in appendix A and expressing color factors in terms of Casimir invariants using (A.7), we

perform an integration-by-parts reduction of the corresponding Feynman integrals. The

relevant master integrals have been evaluated in [39, 40] up to the required order in ε.

D.1 Results for the four-loop diagrams

Here we report the results of the evaluation of the various diagrams. A common factor(
e−4εγE

k(4π)d/2

)4
is understood.

The planar topologies of figure 3 yield

(a) = N2
2C

2
2 (R)

(
8π2C2

θ

(
C2
θ − 2

)
ε2

+
32π2C2

θ

(
(2 log 2− 1)C2

θ − 4 log 2
)

ε

)
+O

(
ε0
)

(D.2)
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Figure 4. List of non-planar diagrams contributing to the four-loop θ-Bremsstrahlung function.

(b) = N2

(
N2

1C2(R)−N1

(
C2

1 (R) + 2C3(R)
)

+ 2 (C1(R)C2(R) + C4(R))
)

×

(
4π2C2

θ

ε3
+

32π2 log 2C2
θ

ε2
+

4
(
13π4 + 96π2 log2(2)

)
C2
θ

3ε

)
+O

(
ε0
)

(D.3)

(c) = N2
2C

2
2 (R)

(
−

16
(
π2C2

θ

)
ε2

+
16π2(7− 8 log 2)C2

θ

ε

)
+O

(
ε0
)

(D.4)

(d) = N2
2C

2
2 (R)

(
16π2C2

θ

ε2
+

16π2(1 + 8 log 2)C2
θ

ε

)
+O

(
ε0
)

(D.5)

(e) = N2
2

(
C2

1 (R)−N1C2(R)
)(128π2C2

θ

ε

)
+O

(
ε0
)

(D.6)

(f) = N2
2

(
C2

1 (R)−N1C2(R)
)(
−

32
(
π2
(
π2 − 4

)
C2
θ

)
ε

)
+O

(
ε0
)

(D.7)

(g) = N2

(
N2

1C2(R)−N1

(
C2

1 (R) + 4C3(R)
)

+ 4 (C1(R)C2(R) + C4(R))
)

×

(
−

2
(
π2C2

θ

)
ε3

−
2
(
π2(8 log 2− 1)C2

θ

)
ε2

−
4
(
π2
(
−9 + 7π2 + 12 log 2(4 log 2− 1)

)
C2
θ

)
3ε

)
+O

(
ε0
)

(D.8)

(h) = N2

(
N2

1C2(R)−N1

(
C2

1 (R) + 4C3(R)
)

+ 4 (C1(R)C2(R) + C4(R))
)

×

(
−

2
(
π2C2

θ

)
ε3

−
2
(
π2(8 log 2− 1)C2

θ

)
ε2

−
2
(
π2
(
17π2 + 6(4 log 2(4 log 2− 1)− 3)

)
C2
θ

)
3ε

)
+O

(
ε0
)

(D.9)

(i) = N2

(
N2

1C2(R)−N1

(
C2

1 (R) + 4C3(R)
)

+ 4 (C1(R)C2(R) + C4(R))
)

×
(
−

2π4C2
θ

3ε

)
+O

(
ε0
)

(D.10)

Diagrams (l)-(o) cancel pairwise and we have not shown their explicit result. The non-

planar diagrams of figure 4 read

(q) =N2
2

(
C2

1 (R)−N1C2(R)+C2
2 (R)

)
C2
θ

(
16π2

ε2
+

32π2
(
C2
θ +4log2

)
ε

)
+O

(
ε0
)

(D.11)
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(t) =N2
2

(
C2(R)(C2(R)−N1)+C2

1 (R)
)
C2
θ

(
−32π2

ε2
− 32π2(1+8log2)

ε

)
+O

(
ε0
)

(D.12)

(r) =N2 (−N1C3(R)+C1(R)C2(R)+C4(R))C2
θ

×

(
4π2

ε3
+

32π2 log2

ε2
+

4
(
π4
(
8C2

θ +3
)

+96π2 log2 2
)

3ε

)
+O

(
ε0
)

(D.13)

(s) =N2 (−N1C3(R)+C1(R)C2(R)+C4(R))C2
θ

×

(
4π2

ε3
+

32π2 log2

ε2
+

4π2
(
19π2 +96log2 2

)
3ε

)
+O

(
ε0
)

(D.14)

(u) =N2 (−N1C3(R)+C1(R)C2(R)+C4(R))C2
θ

×

(
−

16
(
π2
)

ε2
+

32π2
(
π2−3(3+4log2)

)
3ε

)
+O

(
ε0
)

(D.15)

Two-loop scalar propagator corrections. As a by-product of this computation we

present here the two-loop corrections to the scalar self-energy, including color subleading

corrections. Subleading corrections arise from different contractions of the planar topologies

of (D.16)

= + +

+ (D.16)

= C2(R)N2

(
N2

1 − 4N2N1 +N2
2 + 2

) ( π
3ε

+ 2π +O
(
ε1
))

(D.17)

= C2(R)N2 (N1N2 − 1)

(
−56π

3ε
− 112π +O

(
ε1
))

(D.18)

= C2(R)N2

(
N2

1 +N2
2 − 2

)(
−4π

3ε
+ π

(
π2 − 8

)
+O

(
ε1
))

(D.19)

= C2(R)N2 (N1N2 − 1)

(
−16π

3ε
+ 4π

(
π2 − 8

)
+O

(
ε1
))

(D.20)

= C2(R)N2 (N1N2 − 1)

(
64π

3ε
+ 64π +O

(
ε1
))

(D.21)

The corresponding contributions to diagram (p1) in figure 5 are obtained by multiplying

these by 8B(1 + 2ε, 1) I(2, 1/2 + 3ε), where a factor of 2 stems from the two scalar propa-

gators, a factor 4 comes from the normalization of HQET integrals and the indices of the

bubble integrals are fixed by dimensional analysis.
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+
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+
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+
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Figure 5. Scalar bubble corrections.

Scalar bubble corrections. Diagram (p) in figure 3 comprises the corrections to the

scalar bilinear two-point function. Its non-vanishing contributions (some possible contrac-

tions generate for instance TrM(τ1,2) = 0), including color subleading ones are listed in

figure 5. In addition, diagram (p1) involves the two-loop correction to the scalar propaga-

tor, which we detailed above. Altogether, the various contributions from diagram (p) to

the cusp expectation value read

(p1) =C2(R)N2

(
−

4
(
π2
(
N2

1 +4N2N1 +N2
2 −6

)
C2
θ

)
ε2

+
4π2C2

θ

ε

(
(N2

1 +N2
2 )
(
−6+π2−8log2

)
+4N2N1

(
−22+π2−8log2

)
−6π2 +100+48log2

))
+O

(
ε0
)

(D.22)

(p2) =−
16
(
π2
(
π2−12

)
N2 (N2 +N1 (N1N2−2))C2

θ

)
ε

+O
(
ε0
)

(D.23)

(p2) =−
16
(
π2
(
π2−12

)
N2

(
N2C

2
1 (R)+(N1N2−2)C2(R)

)
C2
θ

)
ε

+O
(
ε0
)

(D.24)

(p3) =−
4
(
π2
(
π2−12

)
N2

(
(N1−4N2)C2

1 (R)+
(
N2

2 +2
)
C2(R)

)
C2
θ

)
ε

+O
(
ε0
)

(D.25)

(p4) =
16π2

(
π2−12

)
N2

(
N2C

2
1 (R)+(N1N2−2)C2(R)

)
C2
θ

3ε
+O

(
ε0
)

(D.26)

(p5) =
8π2

(
π2−12

)
N2

(
N1C

2
1 (R)+

(
N2

2 −2
)
C2(R)

)
C2
θ

3ε
+O

(
ε0
)

(D.27)

(p6) =−
8
(
π4N2

(
N2

2C2(R)+(N1−2N2)C2
1 (R)

)
C2
θ

)
ε

+O
(
ε0
)

(D.28)

(p7) =
4π2N2

(
(N1−4N2)C2

1 (R)+
(
N2

2 +2
)
C2(R)

)
C2
θ

ε2
+

+
8π2N2

(
(N1−4N2)C2

1 (R)+
(
N2

2 +2
)
C2(R)

)
(1+4log2)C2

θ

ε
+O

(
ε0
)

(D.29)
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(p8) =
16π2

(
5π2−48

)
N2

(
C2(R)−N2C

2
1 (R)

)
C2
θ

3ε
+O

(
ε0
)

(D.30)

(p9) =
32π2N2

(
C2(R)−N2C

2
1 (R)

)
C2
θ

ε2
−

64
(
π2 (N1−N2)N2(1+4log2)C2

θ

)
ε

+O
(
ε0
)
(D.31)

D.2 Bremsstrahlung function

After summing up the diagrams, computing the cusp anomalous dimension and taking its

small θ limit, the final result for the θ-Bremsstrahlung function for the representation R

reads

Bθ
1/6(R) =

N2C2(R)

4k2
− π2N2

24k4

(
(N1 − 5N2)C2

1 (R) +
(
N2

2 + 5N1N2 − 2
)
C2(R)

+2N1C3(R)− 2C2(R)C1(R)− 2C4(R)) +O
(
k−6

)
(D.32)

We can check that this result is in agreement with the conjecture

Bθ
1/6(R) =

1

8π2
∂m |Wm

B (R)|
∣∣∣∣
m=1

(D.33)

that generalizes (D.1) to generic representations. In fact, plugging for instance (C.2)–(C.6)

in the right-hand-side of (D.33) we obtain

Bθ
1/6(S1) =

N1N2

4k2
−
π2N2

(
5N2

1N2 +N1N
2
2 −3N1−5N2

)
24k4

+O
(
k−6

)
(D.34)

Bθ
1/6(S2) =

(N1 +1)N2

2k2
(D.35)

−
π2N2

(
−2(N1 +2)2 +(N1 +1)N2

2 +5
(
N2

1 +N1−2
)
N2

)
12k4

+O
(
k−6

)
Bθ

1/6(S3) =
3(N1 +2)N2

4k2
(D.36)

+
π2N2

(
4N2

1 +21N1−(N1 +2)N2
2 −5(N1−1)(N1 +3)N2 +32

)
8k4

+O
(
k−6

)
Bθ

1/6(A2) =
(N1−1)N2

2k2
(D.37)

+
π2N2

(
−2(N1−2)2−(N1−1)N2

2 +5
(
−N2

1 +N1 +2
)
N2

)
12k4

+O
(
k−6

)
Bθ

1/6(A3) =
3(N1−2)N2

4k2
(D.38)

+
π2N2

(
−4N2

1 +21N1−(N1−2)N2
2 −5(N1−3)(N1 +1)N2−32

)
8k4

+O
(
k−6

)
These expressions agree with (D.32), upon using formulae (A.8) for the corresponding

representations.

E Perturbative expansion of the latitude matrix model

The proposed matrix model (4.1) for the latitude Wilson loop can be expanded at weak

coupling in the same way as the one for 1/6-BPS Wilson loops given in section C. We
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present here the expansion of the latitude expectation value at framing f = ν, winding

number m and for the fundamental representation

〈Wm
B (ν)〉ν = 1+

iπνm2N1

k

− π
2m2

6k2

(
N2

1

((
2m2 +1

)
ν2 +1

)
−3
(
ν2 +1

)
N1N2 +

(
m2−1

)
ν2−1

)
− iπ

3νm2

18k3

(
N3

1

(
ν2m4 +2

(
ν2 +1

)
m2 +1

)
−6N2

1N2

((
ν2 +1

)
m2 +1

)
+9N1N

2
2 +N1

(
2ν2m4−2

(
ν2 +1

)
m2−1

)
−3N2

((
ν2 +1

)
m2 +1

))
+
π4m2

360k4

(
m2N4

1

((
2
(
m2 +5

)
m2 +3

)
ν4 +10

(
m2 +2

)
ν2 +3

)
−15N3

1N2m
2
(
ν2
(
2
(
ν2 +1

)
m2 +ν2 +8

)
+1
)

+30N2
1N

2
2

(
m2
(
ν4 +6ν2 +1

)
−ν2−1

)
−30N1N

3
2

(
ν2 +1

)
+10N2

1

(
ν4m6−m2

((
ν2 +3

)
ν2 +1

))
−15N1N2

(
4ν2

(
ν2 +1

)
m4−

(
3ν4−4ν2 +3

)
m2−2

(
ν2 +1

))
+15N2

2

(
m2
(
ν4 +6ν2 +1

)
+2
(
ν2 +1

))
+3ν4m6−10

(
ν4 +ν2

)
m4 +m2

(
7ν4 +10ν2 +7

))
+O

(
k−5

)
(E.1)

Remarkably, up to three loops this coincides with the perturbative computation (3.27) at

f = ν. The four-loop term is a new prediction.

We report also the matrix model expansions for the totally symmetric and antisym-

metric representations up to rank 3

〈Wm
B (ν,S2)〉ν = 1+

2iπν (N1 +1)

k

− π2

3k2

(
6ν2 +12ν2N1 +

(
6ν2 +1

)
N2

1 −3
(
ν2 +1

)
N2−3

(
ν2 +1

)
N1N2 +N1−2

)
+
iπ3ν

3k3

(
−4ν2−2

(
2ν2 +1

)
N3

1 +N2
1

(
−12ν2 +5ν2N2 +7N2−4

)
+N1

(
−12ν2 +

(
11ν2 +13

)
N2−3N2

2 +2
)

+2
(
4ν2 +5

)
N2−3N2

2 +4
)

+
π4

180k4

(
8
(
15ν4−30ν2 +7

)
−30

(
ν2 +1

)
N3

2 +8
(
15ν4 +15ν2 +1

)
N4

1

+N3
1

(
8
(
60ν4 +45ν2 +2

)
−15

(
17ν4 +34ν2 +3

)
N2

)
+3N2

1

(
4
(
60ν4 +10ν2−3

)
+5
(
5ν4 +28ν2 +3

)
N2

2 −5
(
55ν4 +94ν2 +5

)
N2

)
+N1

(
480ν4−360ν2−30

(
ν2 +1

)
N3

2 +15
(
11ν4 +64ν2 +9

)
N2

2

−30
(
35ν4 +56ν2−5

)
N2−44

)
+60

(
2ν4 +13ν2 +3

)
N2

2

−30
(
17ν4 +22ν2−9

)
N2

)
+O

(
k−5

)
(E.2)

〈Wm
B (ν,A2)〉ν = 1+

2iπν (N1−1)

k

+
π2

3k2

(
12ν2N1−6ν2−

(
6ν2 +1

)
N2

1 −3
(
ν2 +1

)
N2 +3

(
ν2 +1

)
N1N2 +N1 +2

)
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+
iπ3ν

3k3

(
4ν2−2

(
2ν2 +1

)
N3

1 +N2
1

(
12ν2 +

(
5ν2 +7

)
N2 +4

)
−N1

(
12ν2 +

(
11ν2 +13

)
N2 +3N2

2 −2
)

+8ν2N2 +3N2
2 +10N2−4

)
+

π4

180k4

(
8
(
15ν4−30ν2 +7

)
+30

(
ν2 +1

)
N3

2 +8
(
15ν4 +15ν2 +1

)
N4

1

−N3
1

(
8
(
60ν4 +45ν2 +2

)
+15

(
17ν4 +34ν2 +3

)
N2

)
+3N2

1

(
4
(
60ν4 +10ν2−3

)
+5
(
5ν4 +28ν2 +3

)
N2

2 +5
(
55ν4 +94ν2 +5

)
N2

)
−N1

(
480ν4−360ν2 +30

(
ν2 +1

)
N3

2 +15
(
11ν4 +64ν2 +9

)
N2

2

+30
(
35ν4 +56ν2−5

)
N2−44

)
+60

(
2ν4 +13ν2 +3

)
N2

2

+30
(
17ν4 +22ν2−9

)
N2

)
+O

(
k−5

)
(E.3)

〈Wm
B (ν,S3)〉ν = 1+

3iπν (N1 +2)

k

− π2

2k2

(
36ν2 +

(
9ν2 +1

)
N2

1 +N1

(
36ν2−3

(
ν2 +1

)
N2 +2

)
−6
(
ν2 +1

)
N2−3

)
− iπ

3ν

2k3

(
72ν2 +

(
9ν2 +3

)
N3

1 −2N2
1

(
−27ν2 +4ν2N2 +5N2−6

)
+N1

(
108ν2−2

(
17ν2 +19

)
N2 +3N2

2 +3
)
−3
(
13ν2 +14

)
N2 +6N2

2 −18
)

+
π4

120k4

(
27
(
240ν4−120ν2 +7

)
−60

(
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(E.4)

〈Wm
B (ν,A3)〉ν = 1+

3iπν (N1−2)
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+5
(
611ν4 +782ν2−11

)
N2−68

)
+45

(
13ν4 +80ν2 +15

)
N2

2

+60
(
119ν4 +133ν2−18

)
N2

)
+O

(
k−5

)
(E.5)

Again these results show agreement with (3.24) at f = ν.

F Checks on the strong coupling expansion

Derivatives with respect to ν. As discussed in section 2, for applications to the

Bremsstrahlung function a simpler problem than computing the whole strong coupling

expansion of the latitude Wilson loop consists in evaluating the expansion of its derivative

with respect to ν, at ν = 1. On the one hand, using prescription (4.1) this reduces to the

evaluation of the derivative of the ordinary 1/6-BPS Wilson loop with winding number

m (see discussion in section 4). Its strong coupling expansion is then inherited from the

expansion of the derivative of the m-wound operator [25] computed using the Fermi gas

description. On the other hand, we can evaluate ∂ν〈WB(ν)〉|ν=1 at strong coupling directly,

using the prescription (5.34) with the ν-derivative hitting the nO1,ν distribution. The

agreement between the two results will provide a test for the correctness of the expansion

carried out in section 5.

In order to evaluate the ν-derivative in the Fermi gas approach it is convenient to

use expression (5.24) for the occupation number distribution expressed in terms of the

Ĩ1,ν (region I) and Ĩν,1 (region II) integrals defined in (5.26). The ν → 1 limit makes the

integrals over region III exponentially subleading and therefore we discard them.

The effect of applying the ν-derivative to the integrals in (5.26) (where for convenience

we factor out (−1)−ν in the integral for region I) is to produce the following two new

integrals

Ĩ
(1)
1,ν =

∫ u∗

0
du

u log u
1−u2

1− u2
(F.1)

and

Ĩ
(1)
ν,1 =

∫ u∗

0
du

u log u

1− u2
(F.2)

Integrating them and paying attention to the fact that the integration limits are complex,

we find

region I→
e

2µ
k

(
ikLi2(u2) + log

(
1− u2

) (
ik log u2 − ik log

(
1− u2

)
+ πk − 2ik + 4iµ

))
16π2

(F.3)

and

region II→ −
ike

2µ
k

(
−Li2(u2)− log u2 log

(
1− u2

))
16π2

(F.4)

Summing these two expressions with the bulk contribution (5.19) we obtain

∂ν nO1,ν

∣∣∣∣
ν=1

=
e

2µ
k

16π2

[
2ikLi2

(
u2
)

+ log
(
1− u2

) (
2ik log

(
u2
)

+ (π − 2i)k + 4iµ
)

− ik log2
(
1− u2

)
+ 4ik + πk − 4iµ

]
(F.5)
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We now expand Li2 for asymptotically large values of its argument using the general identity

Lis(z) =

∞∑
k=0

(−1)k(1− 21−2k)(2π)2k B2k

(2k)!

logs−2k(−z)

Γ(s+ 1− 2k)
(F.6)

Note that for any given s these expansions stop after a finite number of terms.

Plugging this expansion into (F.5) we finally obtain

∂ν nO1,ν

∣∣∣∣
ν=1

=
ie

2µ
k

((
24 + π2

)
k2 − 48kµ+ 48µ2

)
96π2k

(F.7)

If we now take the same expression (5.3) for the m-wound 1/6-BPS Wilson loop, compute

its derivative with respect to m and set m = 1 we indeed reproduce (F.7) correctly. This

constitutes a successful test of our procedure.

The n-th derivative. In principle further checks can be performed applying an arbi-

trarily large number of derivatives, provided there is enough computational power. In

particular, taking the nth derivative of the integrals in (5.26), evaluating their large µ

asymptotic behavior and plugging the result in (5.24) we check that we obtain the same

expression as from applying the nth derivative directly on the asymptotic expression (5.31).

Here we report a sketch of this computation, primarily because the structure of the rele-

vant integrals that get produced is particularly interesting: they belong to a class that can

be entirely solved in terms of Harmonic polylogarithms [86], for which a well established

technology exists (and also the Mathematica package [87, 88]).

The relevant integral in region I, arising from taking the nth derivative of (5.26) eval-

uated at a = 1, b = ν, reads

Ĩ
(n)
1,ν ≡

∫ u∗

0
du

u logn u
1−u2

1− u2
(F.8)

Upon a simple change of variables it can be reduced to an integral that can be immediately

solved in terms of harmonic polylogarithms

Ĩ
(n)
1,ν =

∫ u2
∗

0
du

(1
2 log u− log (1− u))n

2(1− u)
≡

n∑
k=0

(
−1

2

)k (
n

k

)
I(n− k, k) (F.9)

where

I(a, b) =

∫ u2
∗

0
du

logb u loga(1− u)

2(1− u)
= (−1)a

a!b!

2

∑
r∈{1a}�{0b}

H1,r(u
2) (F.10)

In region II, applying the nth derivative to (5.26) this time evaluated at a = ν, b = 1,

we obtain

Ĩ
(n)
ν,1 ≡

∫ u∗

0
du

u logn u

1− u2
(F.11)

Applying partial fractioning this can be reduced to an integral that enters the definition of

the harmonic polylogarithms

Ĩ
(n)
ν,1 =

n!

2n+1
H1,0n(u2) (F.12)
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Alternatively, this expression can be reduced to the following combination of ordinary

polylogarithms

Ĩ
(n)
ν,1 =

1

2

n∑
k=1

(n− 1)!

(n− k)!
(−1)k+1 logn−k (Lik(u) + Lik(−u)) (F.13)

Solutions (F.9) and (F.12) have also been checked numerically.

Extraction of the asymptotic behavior. We are interested in the large µ behavior of

these integrals, that is when the argument of the polylogarithms grows exponentially. To

this end it is convenient to change their argument as u→ 1/t, reduce the polylogarithms to

have argument t and finally extract their logarithmic divergence at t = 0. This procedure

can be performed in a completely algorithmic (and recursive) manner, though it might take

a long computing time for a large number n of derivatives.

After extracting the leading behavior for the integrals (i.e. neglecting exponentially

small corrections) and plugging them into (5.24), we have checked that the result coincides

with taking the nth derivative directly on the general asypmptotic expression (5.31). This

provides a consistency check of our asymptotic expansions.
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