
ar
X

iv
:1

30
7.

07
86

v2
  [

he
p-

th
] 

 1
4 

Ju
l 2

01
3

Preprint typeset in JHEP style - PAPER VERSION July 2013

HU-EP-13/30

The 1/2 BPS Wilson loop in ABJ(M) at two

loops: The details

Marco S. Bianchi∗, Gaston Giribet#, Matias Leoni#, and Silvia Penati†
∗Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489

Berlin, Germany

#Physics Department, FCEyN-UBA & IFIBA-CONICET Ciudad Universitaria,

Pabellón I, 1428, Buenos Aires, Argentina
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Abstract: We compute the expectation value of the 1/2 BPS circular Wilson loop

operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out

to be in exact agreement with the weak coupling limit of the prediction coming from

localization, including finite N contributions associated to non–planar diagrams. It

also confirms the identification of the correct framing factor that connects framing-

zero and framing-one expressions, previously proposed. The evaluation of the 1/2

BPS operator is made technically difficult in comparison with other observables of

ABJ(M) theory by the appearance of integrals involving the coupling between fermions

and gauge fields, which are absent for instance in the 1/6 BPS case. We describe

in detail how to analytically solve these integrals in dimensional regularization with

dimensional reduction (DRED). By suitably performing the physical limit to three

dimensions we clarify the role played by short distance divergences on the final result

and the mechanism of their cancellation.
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1. Introduction

The study of Wilson loops is of central importance in gauge theories since they contain

relevant information, for instance about the potential between colored particles and

about the Schwinger pair production probability. For supersymmetric gauge theories

Wilson loop operators can be defined, which preserve a certain amount of supersym-

metry. These objects play a central role also in non–trivial tests of the AdS/CFT

correspondence.

Supersymmetric Wilson loops have been first formulated in N = 4 SYM theory

[1, 2], where adding a coupling to the scalars of the theory makes the Wilson loop

operator locally invariant under half of the supercharges of the theory. In the context

of the AdS/CFT correspondence, this 1/2 BPS object is the field theory dual of a

fundamental macroscopic string living in the AdS5 × S5 background. The expectation

value of a 1/2 BPS Wilson loops on a path Γ can thus be computed at strong coupling

in terms of a minimal area surface in AdS5 ending on a contour Γ at its boundary and

at a fixed point on S5.

Whether or not supersymmetry is globally preserved depends on the shape of the

contour. For a straight line the normalized Wilson loops is invariant under eight su-

percharges and is protected in a way that its expectation value is exactly one. For a

circular contour the Wilson loop is still invariant under eight combinations of super-

conformal charges [3]. Despite being conformally equivalent to the Wilson loop on the

straight line, it receives quantum corrections [4, 5] due to the fact that the conformal

transformation is anomalous.

An exact result for the circular Wilson loop has been found in [6] by applying

localization techniques which allow to reduce its calculation to the evaluation of a

finite dimensional matrix model. In the planar limit and for large coupling constant the

matrix model result reproduces the string theory computation. Therefore, it provides

an example of function interpolating from weak to strong coupling, allowing for a very

non–trivial test of the AdS/CFT correspondence.

A large class of less supersymmetric Wilson loops has also been constructed. In

[7, 8] Wilson loops have been defined on a three sphere in space–time, which couple to

scalars through the invariant one–forms of S3 and preserve 1/16 of the supersymmetry.

When the Wilson loop contour is restricted to a maximal two sphere, supersymmetry
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gets enhanced and gives rise to 1/8 BPS configurations. Wilson loop expectation values

can still be computed by a matrix model [9, 10]. Amazingly, their expectation values

depend only on the area enclosed by the contour on the two sphere and they turn out

to be related to Wilson loops in two dimensional Yang–Mills theory.

In three dimensional Chern–Simons theory Wilson loops and their correlation func-

tions are the basic observables to be computed and have been intensively studied in

the past in connection with knot theory [11].

Renewed interest in three dimensional Wilson loops has grown after the formulation

of the ABJM theory [12], a three dimensional N = 6 superconformal Chern–Simons–

matter model with gauge group U(N)k × U(N)−k (or U(N)k × U(M)−k in the ABJ

generalization [13]) and opposite Chern–Simons levels k and −k. This theory describes

the low energy dynamics of a stack on N M2 branes in M–theory probing a C4/Zk

geometry. In the large N limit it has a ’t Hooft parameter given by the ratio λ = N
k
.

For k ≫ N such a coupling is small and the theory allows for a perturbative description.

In the opposite regime the theory is strongly coupled and admits a dual description in

terms of M–theory in the near horizon geometry of the M2 branes, that is AdS4×S7/Zk.

A supergravity approximation is valid when the radius of the M–theory circle is large,

namely whenever N ≫ k5. In the intermediate region where k ≪ N ≪ k5 the proper

dual description is in terms of type IIA string theory on AdS4 × CP
3.

The realization of a three dimensional version of the AdS/CFT correspondence

has stimulated the study of observables in ABJM theory. On the one hand scattering

amplitudes of N = 6 supersymmetric Chern–Simons–matter theories [14]–[25] have

been computed and they have been found to exhibit nice symmetry properties as in

four dimensional N = 4 SYM. Their allegedly dual objects, namely light–like polygonal

Wilson loops have been also calculated [26]–[28], and the emergence of a duality with

amplitudes have been observed at four points.

On the other hand supersymmetric circular Wilson loop have been studied. In

particular, 1/6 BPS Wilson loops have been defined in [29, 30, 31], which are formally

similar to the 1/2 BPS Wilson loops of N = 4 SYM, in the sense that they only feature

a coupling with the scalar fields of the theory [32]. Their expectation values have been

computed in the planar limit, up to two loops.

As in N = 4 SYM, localization can be used to compute supersymmetric Wilson

loops in ABJM. The partition function of ABJM on a three-sphere has been shown to

localize to a non–Gaussian matrix model [33, 34], and the expectation value of the 1/6

BPS Wilson loop has been computed by expanding the matrix model at weak coupling.

In the planar limit the result is in agreement with the direct computation of [29, 30, 31].

In parallel, a 1/2 BPS Wilson loop operator has been defined [35]. Enhancing

supersymmetry requires including a fermionic sector. As shown in [35], this is accom-
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plished by extending the connection to a supermatrix of the U(N |M) supergroup. The

1/2 BPS Wilson loop has been proven to be cohomologically equivalent to a combi-

nation of 1/6 BPS Wilson loops. This has led to the possibility to use localization

techniques to make a prediction [35, 36] for its expectation value using the already

known results for 1/6 BPS objects.

Despite the result from localization, an explicit field theory perturbative computa-

tion of the two–loop contribution to the 1/2 BPS Wilson loop has been lacking until

very recently. In [37] we have tackled the problem of computing it in the planar limit,

and comparing it with the weak coupling limit of the prediction coming from localiza-

tion.

The reconstruction of the localization result within an ordinary field theory ap-

proach is strongly motivated by many reasons. In fact, not only it represents a non–

trivial check of the result, but it also allows for a deeper comprehension of the mecha-

nisms underlying the cancellation of short distance divergences and the appearance of a

finite result. Moreover, it addresses the question of understanding the relation between

different regularization schemes.

While in [37] we have simply reported the main result and briefly discussed its

relation with the localization result, in the present paper we give a detailed explanation

of the procedure we used and all technical aspects involved in the evaluation of contour

integrals and discuss the role played by regulated short distance divergences. Moreover,

we extend the previous result to the non–planar case, that is to finite N,M .

The computation is hampered by intricate diagrams emerging from the fermionic

sector. The integrals appearing in the calculation are generally divergent and re-

quire regularization. We apply dimensional regularization with dimensional reduction

(DRED). The regulated integrals are hard to solve analytically, nevertheless we manage

to perform them with the use of series expansions and Mellin–Barnes representation

and provide results at any order in the regularization parameter.

Within DRED scheme special care has to be taken in dealing with the ubiquitous

εµνρ tensors of the Chern–Simons theory. We show how a consistent way to deal with

them leads to the appearance of evanescent factors in front of divergent integrals. From

the product of the two pieces finite terms arise, which concur to determine the final

result.

The comparison between the localization and the perturbative results requires a

careful analysis of framing. In fact, while the perturbative calculation done using

dimensional regularization corresponds to choosing framing zero, the localization result

comes naturally in framing one. It is then necessary to identify the framing factor in

the localization result and remove it. A proposal for the correct framing phase was

made in [35]. We have found that removing the factor proposed there, the remaining
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contribution perfectly matches the perturbative expression. Therefore, our perturbative

result not only is a non–trivial check of the localization result but proves the correctness

of the framing phase identified in [35].

The main result of this paper is eq. (9.1) for the two–loop expansion of the 1/2

BPS Wilson loop for any value of N,M . The result is finite and perfectly matches the

prediction from localization, color subleading terms included.

The paper is organized as follows. In Section 2 we give an upshot of the strategy

we follow for the computation. In particular, we present the regularization we employ

for taming divergent integrals, and outline the method for solving them. In Section 3

we compute the contributions to the Wilson loop expectation value at one loop and

show that they are subleading in dimensional regularization. In Section 4 we present

the diagrams contributing at two–loops. These come from the purely bosonic sector

and its mixing with fermions. In Section 5 we compute contributions from the former,

which allows us to give a complete expression for the 1/6 BPS Wilson loop including

subleading terms. In Section 6 we solve the diagram coming from a double fermion

exchange, while Section 7 is devoted to the study of the intricate diagram featuring

a mixed interaction vertex. Some of these results require analytic continuation to be

expanded in powers of the dimensional regularization parameter. This is accomplished

in Section 8. Finally, in Section 9 we sum all contributions, so obtaining the 1/2 BPS

Wilson loop expectation value at two loops and compare it to the prediction from local-

ization, finding perfect agreement. Several Appendices follow containing further details

of the computation such as the explanation of the method for solving contour integrals

and their explicit evaluation.

Note added: A similar investigation has been performed in another paper [38],

cuncurrently appeared in the ArXiv, where the result of [37] has been reproduced using

slightly different techniques for computing the integrals.

2. The general strategy

We are interested in the perturbative evaluation of Wilson loops (WL) in U(N)k ×
U(M)−k ABJ(M) theories [12, 13]. These models contain two Chern–Simons gauge

fields A, Â plus propagating scalar matter fields (CI , C̄
I), I = 1, ..., 4, and the corre-

sponding fermions (ψ̄I , ψI), all in the (anti)bifundamental representation of the gauge

groups. The coupling to the gauge sector, as given by the action (A.12), insures N = 6

supersymmetry. We work in euclidean three–dimensional space. Conventions and def-

initions are collected in Appendix A.
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WL preserving 1/6 of the supersymmetry have been constructed as [29, 30, 31]

〈W1/6[Γ]〉 =
1

N

∫
D[A, Â, C, C̄, ψ, ψ̄] e−S Tr

[
P exp

(
−i
∫
Γ
dτA(τ)

)]

〈Ŵ1/6[Γ]〉 =
1

M

∫
D[A, Â, C, C̄, ψ, ψ̄] e−S Tr

[
P exp

(
−i
∫
Γ
dτÂ(τ)

)]
(2.1)

where S is the euclidean action (A.12), Γ is an infinite straight line or, equivalently, a

circle and the generalized connections are defined as

A = Aµẋ
µ − 2πi

k
|ẋ|M I

JCIC̄
J , Â = Âµẋ

µ − 2πi

k
|ẋ|M̂ I

J C̄
JCI (2.2)

in terms of two constant matrices M = M̂ = diag(−1,−1, 1, 1).

A linear combination of these WL transforming oppositely under time–reversal is

the 1/6 BPS operators studied in Ref. [29], that is

W+
1/6[Γ] =

N W1/6[Γ] +M Ŵ1/6[Γ]

N +M
(2.3)

As discussed in [30], a suitable extension of the previous holonomies allows for the

construction of a WL that preserves 1/2 of the supersymmetry. This can be expressed

in terms of a superconnection L of the supergroup U(N |M). Precisely, the 1/2 BPS

WL is defined as

〈W1/2[Γ]〉 =
1

M +N

∫
D[A, Â, C, C̄, ψ, ψ̄] e−S Tr

[
P exp

(
−i
∫
Γ
dτL(τ)

)]
(2.4)

where L(τ) is represented as the supermatrix

L(τ) =


 A −i

√
2π
k
|ẋ|ηIψ̄I

−i
√

2π
k
|ẋ|ψI η̄

I Â


 (2.5)

with A, Â still given by (2.2), though with different matrices M,M̂ (see (2.7) below)

and η, η̄ are two commuting spinors controlling the couplings to the fermions in the

(anti)bifundamental representation of the gauge groups.

We choose the path Γ to be the unit circle, parametrized as

xµ = (0, cos τ, sin τ) , τ ∈ [0, 2π] (2.6)

In this case, preserving half of the supersymmetry requires [35]

M J
I = M̂ J

I = δJI − 2δJ1 δ
1
I , (2.7)

ηαI (τ) =
(
eiτ/2 − ie−iτ/2

)
δ1I , η̄Iα(τ) =

(
ie−iτ/2

−eiτ/2
)
δI1 , (ηη̄) = 2i.
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The perturbative evaluation of the expression (2.4) is performed by Taylor expand-

ing the exponential of the superconnection and taking the expectation value by Wick

contracting the fields. Since we are interested in the two–loop quantum corrections, it

suffices to expand it up to the fourth order. In this process we get purely bosonic con-

tributions from the diagonal part of the U(N |M) super-matrix (2.5), purely fermionic

contributions from the off–diagonal blocks and mixed contributions from the mixing of

the two. We will study the bosonic and fermionic contributions separately.

When computing loop integrals and performing integrations along the circle, po-

tential divergent contributions arise at short distances. In order to deal with them, we

use dimensional regularization with dimensional reduction scheme (DRED) [39], which

has been proven [41] to preserve gauge invariance and supersymmetry of Chern–Simons

theories up to two loops 1.

DRED requires to assign Feynman rules in three dimensions and perform all tensor

manipulations strictly in three dimensions before promoting loop integrals to D =

3−2ǫ. A suitable prescription is then required for contracting three–dimensional objects

coming from Feynman rules withD–dimensional tensors arising from tensorial integrals.

DRED scheme assigns the following rules [40] for contracting three–dimensional metrics

ηµν and D–dimensional ones η̂µν

ηµνηµν = 3 η̂µν η̂µν = 3− 2ǫ ηµν η̂νρ = η̂µρ (2.8)

Particular care is required when contracting D–dimensional metric tensors with Levi–

Civita tensors εµνρ that cannot be defined outside three dimensions. Usually, two

possible strategies for overcoming the problem can be used: Either tensor algebra is

performed until one reaches a situation where only scalar integrals survive [41], or one

applies algebraic identities in order to get rid of all ε tensors. In the following, we

will adopt the latter strategy; in particular, products of ε tensors will be traded with

products of three–dimensional metric tensors via the identity

ελµνερστ = ηλρ(ηµσηντ − ηµτηνσ)− ηλσ(ηµρηντ − ηµτηνρ) + ηλτ (ηµρηνσ − ηµσηνρ) (2.9)

When parametrizing the WL circular contour by polar coordinates, the final inte-

grals take the form of multiple integrations over powers of trigonometric functions. In

particular, such powers depend on the regularization parameter ǫ and therefore it is

necessary to carry out such integrals analytically for all values of ǫ. This is a hard task

which we tackle as explained in detail in Appendix C. The central idea of our method

is the following. After rewriting trigonometric functions as complex exponentials, we

1Recently, this prescription has been also shown to fix the problem of uniform (maximal) transcen-

dentality of the two–loop result for the light–like tetragon WL in ABJM theory [28].
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expand powers as geometric series. Working in save regions of the parameters where

we can exchange series with integrals we can then easily perform integrations term by

term, producing multiple series. Finally, we manage to sum such series in terms of

hypergeometric functions.

In general, once regularized, the integrals converge in the complex half–plane de-

fined by some critical value of the real part of the regularization parameter ǫ. In the

region of parameters where these functions are well–defined we test the results numer-

ically.

In general, the half–plane where integrals and hypergeometric series converge does

not include the neighbourhood of ǫ = 0, which is the physical limit we need eventually

take. Therefore, we analytically continue the hypergeometric functions close to the

ǫ = 0 region and expand the results up to finite terms.

3. WL at one loop

At one loop, there are in principle three diagrams. Two of them come from the purely

bosonic sector and are also present in the computation of the 1/6 BPS WL. These are

a scalar tadpole arising from the first order expansion of the exponential and a single

gluon exchange, from expanding the WL operator to second order.

Since we work in dimensional regularization we consistently

Figure 1: One–loop

fermion exchange dia-

gram.

discard the tadpole diagram. The gluon exchange vanishes be-

cause of the antisymmetry of the ε tensor carried by the prop-

agator (A.16), which is contracted with three vectors lying on

the plane of the circular contour.

We stress that this feature is special of performing the com-

putation without framing [11, 42]. The inclusion of framing,

as reviewed in Section 9, consists in thickening the WL con-

tour with an infinitesimally displaced framing path, which may

wound around the original one. This provides a point–splitting

regularization of the WL. In such an approach the gluon exchange diagrams should

have been taken into account, since, for instance, the ε tensor could be contracted with

a vector slightly off the plane where the circle lies. This kind of simplification from

working without framing occurs also at two–loops.

The extra diagram comes from the fermionic sector and contributes to the 1/2 BPS

WL only. This is a single fermion exchange depicted in Fig. 1, from the second order

expansion of the WL operator. Contrary to the previous diagrams this does not vanish

by symmetry and is the only non–trivial contribution to the WL.
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Inserting the explicit expression for the fermion propagator (A.19) and forgetting

about overall coefficients we obtain

〈W1/2[Γ]〉(1) ∼
∫
dτ1>2 η

α
I (τ1) 〈ψ̄I

α(τ1)ψ
β
J (τ2)〉 η̄Jβ (τ2)

∼
∫
dτ1>2 (η1γ

µη̄2)
(x1 − x2)µ

[(x1 − x2)2]
3
2
−ǫ

(3.1)

where we used the notation
∫
dτ1>2 ≡

∫ 2π

0
dτ1
∫ τ1
0
dτ2. The integral is reduced to

〈W1/2[Γ]〉(1) ∼ I(1) =

∫ 2π

0

dτ1

∫ τ1

0

dτ2
1

[sin2 τ12
2
]1−ǫ

, (3.2)

as it can be easily verified by using identities (B.2, B.12).

The evaluation of integral (3.2) is discussed in greater detail in Appendix C; here

we simply give an upshot of the procedure.

After writing the trigonometric function in terms of exponentials, we expand powers

as geometric series and perform integrations term by term. Imposing the result to be

real for ǫ real allows to express the integral as

I(1) =
23−2ǫ π

Γ(2− 2ǫ)
sin(π(1− ǫ))S1[1− ǫ] (3.3)

where the series Sλ[α] is defined in (C.6). This series can be summed, see (C.8), yielding

I(1) =
2π3/2Γ

(
−1

2
+ ǫ
)

Γ (ǫ)
(3.4)

The integral turns out to be subleading in ǫ. Therefore, removing the regularization

parameter we get 〈
W1/2[Γ]

〉(1)
= 0, (3.5)

in line with the prediction from localization, as we discuss in Section 9.

4. WL at two loops: The diagrams

At two loops, neglecting contributions which vanish identically because of the antisym-

metry of the ε tensor, we are left with the diagrams in Fig. 2. We note that, due

to the bifundamental nature of matter, non–planar diagrams cannot be constructed

from scalars and fermions. In the gauge sector, one potential non–planar contribution

would be a crossed ladder pure gauge graph, but it turns out to be identically zero like
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the planar ladder. Therefore, subleading contributions come only from the pure gauge

graph 2(a).

The first three diagrams in Fig. 2 are purely bosonic diagrams coming from con-

tracting the diagonal terms in (2.5). Apart from the difference in the matrices M,M̂
these contributions are common to 1/2 BPS and 1/6 BPS WL. What distinguishes the

1/2 BPS WL is the appearance of three extra contributions with fermion propagators

corresponding to contractions which involve off–diagonal terms in the supermatrix L.

(a) (b) (c)

(f )(e)(d)

Figure 2: Non-vanishing two–loop diagrams for BPS Wilson loops. Wavy lines represent

gauge propagators, solid lines represent scalars, and dashed lines are fermion propagators.

Bubbles represent one–loop corrections to the propagators.

In particular, diagram 2(d) comes from the fermionic part of the second order

expansion of the WL with a one–loop contraction between the two fermions. Using the

fermion propagator (A.20) we obtain

(d) = i
M −N

M +N

(
MN

k2

)
Γ2(1

2
− ǫ)

4π1−2ǫ

∫
dτ1>2

|ẋ1||ẋ2|
[(x1 − x2)2]1−2ǫ

[(η1η̄2)− (η2η̄1)] = 0

(4.1)

The last equality easily follows from the fact that (η1η̄2) = (η2η̄1), as is evident from

identity (B.7). Therefore, diagram 2(d) does not contribute.

We are then left with three bosonic contributions plus two non–vanishing fermionic

contributions corresponding to a double fermion–line diagram, Fig. 2(e), and a gauge–
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fermion vertex diagram, Fig. 2(f). We are going to discuss them separately.

5. WL at two loops: The bosonic sector

The first three diagrams in Fig. 2 have been already evaluated in literature [29] for the

1/6 BPS case, in the planar limit. Here we briefly review the results, extending them

to the case of M , N finite.

Diagram 2(a) comes from the gauge part of the third order expansion of the WL

contracted with the gauge cubic vertex (A.21). Summing the contributions from the

two generalized connections A and Â, we can write

(a) = −M(M2 − 1) +N(N2 − 1)

M +N

1

k2
Γ3(3

2
− ǫ)

2π
5
2
−3ǫ

∫
dτ1>2>3 ẋ

σ
1 ẋ

η
2 ẋ

ζ
3 ε

ξτκεσξµεητνεζκρ I
µνρ

(5.1)

where

Iµνρ ≡
∫
d3−2ǫx

(x− x1)
µ(x− x2)

ν(x− x3)
ρ

|x− x1|3−2ǫ|x− x2|3−2ǫ|x− x3|3−2ǫ
(5.2)

Integral (5.1) is well–known from pure Chern–Simons and, being finite, can be com-

puted at ǫ = 0 (see for instance ref. [29], eq. (6.11)). Its value is 8
3
π3, so we obtain

(a) = −M
2 +N2 −MN − 1

k2
π2

6
(5.3)

Diagrams 2(b) and 2(c) arise from the bosonic part of the quadratic term in the

WL expansion where in one case the one–loop gauge propagator is inserted, whereas

in the second case contractions in the scalar sector are performed.

Using the 1–loop vector propagator (A.17), the first term gives

(b) = −NM
2 +N2M

M +N

1

k2
Γ2(1

2
− ǫ)

π1−2ǫ

∫
dτ1>2

ẋ1 · ẋ2
[(x1 − x2)2]1−2ǫ

(5.4)

whereas, using the scalar propagator (A.18) the second term gives

(c) =
NM2 +N2M

M +N

1

k2
Γ2(1

2
− ǫ)

4π1−2ǫ

∫
dτ1>2

|ẋ1||ẋ2|
[(x1 − x2)2]1−2ǫ

Tr(M1M2) (5.5)

Summing the two contributions and using identity (B.11) we obtain

[(b) + (c)] =
MN

k2
Γ2(1

2
− ǫ)

π1−2ǫ

∫
dτ1>2

−ẋ1 · ẋ2 + |ẋ1||ẋ2|
[(x1 − x2)2]1−2ǫ

(5.6)
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The integral is finite and can be computed exactly in three dimensions. For the unit

circle it gives π2 (see eq. (6.10) in [29]) and we obtain

[(b) + (c)] =
MN

k2
π2 (5.7)

Summing diagrams 2(a), 2(b) and 2(c) from the bosonic sector and normalizing properly

gives rise to the expectation value of the 1/6 BPS WL combination at two loops

(a) + (b) + (c) = 〈W+
1/6〉(2) (5.8)

The result is

〈W+
1/6〉(2) = 1 +

π2

6 k2
[
−(M2 +N2) + 7MN + 1

]
(5.9)

We note that for M = N and in the planar limit the two–loop correction reduces

to 5
6
π2
(
N
k

)2
, which is the result for the 1/6 BPS WL in ABJM [29].

6. WL at two loops: Double fermion–line diagram

We now move to the evaluation of new genuine contributions to the 1/2 BPS WL.

Diagram 2(e) corresponds to a double contraction of fermions in the fourth order

expansion of the WL. Using the tree–level fermionic propagator (A.19) and summing

over the two possible ways to make contractions, we obtain

(e) = − 1

M +N

(
2π

k

)2 Γ2(3
2
− ǫ)

4π3−2ǫ

∫
dτ1>2>3>4 |ẋ1||ẋ2||ẋ3||ẋ4|× (6.1)

{
[
MN2(η1γ

µη̄2)(η3γ
ν η̄4) +M2N(η2γ

µη̄1)(η4γ
ν η̄3)

] (x1 − x2)µ(x3 − x4)ν

[(x1 − x2)2(x3 − x4)2]
3
2
−ǫ

+
[
M2N(η1γ

µη̄4)(η3γ
ν η̄2) +MN2(η4γ

µη̄1)(η2γ
ν η̄3)

] (x1 − x4)µ(x2 − x3)ν

[(x1 − x4)2(x2 − x3)2]
3
2
−ǫ

}

This expression can be easily elaborated by the help of identity (B.12) and we find

(e) =
MN

k2
Γ2(3

2
− ǫ)

(4π)1−2ǫ

∫
dτ1>2>3>4

{
1

[sin2 τ12
2
sin2 τ34

2
]1−ǫ

+
1

[sin2 τ14
2
sin2 τ23

2
]1−ǫ

}
(6.2)

where we have introduced the notation τij = τi − τj .
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Neglecting for a moment the overall coefficient in front, we concentrate on the

evaluation of the two integrals

I(1)e + I(2)e =

2π∫

0

dτ1

τ1∫

0

dτ2

τ2∫

0

dτ3

τ3∫

0

dτ4

{
1

[sin2 τ12
2
sin2 τ34

2
]1−ǫ

+
1

[sin2 τ14
2
sin2 τ23

2
]1−ǫ

}

(6.3)

The easiest way to carry out the calculation is to trade the sum of these two integrals

with a third one

I(3)e ≡
2π∫

0

dτ1

τ1∫

0

dτ2

τ2∫

0

dτ3

τ3∫

0

dτ4
1

[sin2 τ13
2
sin2 τ24

2
]1−ǫ

(6.4)

which would correspond to a crossed diagram. This is based on the observation that

the sum (I
(1)
e + I

(2)
e + I

(3)
e ) is subleading in ǫ, as shown at the end of Appendix C.

Therefore, up to O(ǫ) terms, we can write (I
(1)
e + I

(2)
e ) = −I(3)e .

The evaluation of I
(3)
e turns out to be much simpler, being it finite for ǫ → 0.

We compute it by generalizing to the two–loop case the method outlined in Appendix

C. The main difference in this case is that we have to expand the product of two

trigonometric functions. As a result, performing the integrations term by term, we end

up with a linear combination of double series. Precisely, if we introduce the notation

Sλ1,λ2,λ3
[α] =

∞∑

n,m=0

Γ(n+ 2α)Γ(m+ 2α)

n!m!(n + α)λ1(m+ α)λ2(m+ n + 2α)λ3
(6.5)

and define (1− ǫ) ≡ α for convenience, then imposing that the result of the integral be

real for α real as explained in Appendix C, we find

I(3)e =
24α

Γ2(2α)

[
− 2π sin(2πα)S1,1,1[α] + (1− cos(2πα)) S2,2,0[α]

]
(6.6)

=
24α

Γ2(2α)

[
− 2π sin(2πα) (S2,1,0[α]− S2,0,1[α]) + (1− cos(2πα)) S2,2,0[α]

]

where in the second line a simple algebraic identity has been used.

Numerical evaluation over a large range of complex values of α shows that this

result is correct. In order to obtain an analytical result we have to evaluate the previous

series. Using known summation formulae we obtain

S2,1,0[α] = 2−4α cot(πα)Γ2

(
1

2
− α

)
Γ2(α)Γ2(2α)

S2,0,1[α] =
πΓ2(2α) 4F3(α, α, 2α, 2α; 1, α+ 1, α+ 1; 1)

α2 sin(2πα)
(6.7)
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and

S2,2,0[α] = π2−4α cot2(πα)Γ2

(
1

2
− α

)
Γ2(α)Γ2(2α) (6.8)

Collecting all pieces and taking into account the overall coefficient in eq. (6.2) we finally

obtain

(e) =
MN

k2

{
− 8π1+2ǫΓ

2
(
3
2
− ǫ
)

(1− ǫ)2
4F3

[
2−2ǫ, 2−2ǫ, 1−ǫ, 1−ǫ

1, 2−ǫ, 2−ǫ ; 1

]

+
1

2
(2π)2ǫ Γ2(1− ǫ) Γ2

(
1

2
− ǫ

)
Γ2

(
1

2
+ ǫ

)
cos2(πǫ)

}
(6.9)

This expression is well–defined in the complex half–plane ℜ(ǫ) > 1
4
. Therefore, an

analytical continuation of the result in a region close to ǫ = 0 is required in order to

obtain a safe expansion in powers of ǫ. We postpone the discussion of this point to

Section 8.

7. WL at two loops: Gauge–fermion vertex diagram

Diagram 2(f) arises from the six gauge–fermion mixed terms in the third order expan-

sion of the WL (recall that |ẋ| = 1 on the unit circle)

− i

M +N

(
2π

k

) ∫
dτ1>2>3 Tr

{
η2I η̄

J
3 〈A1µψ̄

I
2ψ3J〉 ẋµ1 + η̄I2η3J 〈Â1µψ2I ψ̄

J
3 〉 ẋµ1 (7.1)

+ η3I η̄
J
1 〈ψ1IA2µψ̄

J
3 〉 ẋµ2 + η̄I3η1J 〈ψ̄J

1 Â2µψ3I〉 ẋµ2
+ η1I η̄

J
2 〈ψ̄I

1ψ2JA3µ〉 ẋµ3 + η̄I1η2J 〈ψ1Iψ̄
J
2 Â3µ〉 ẋµ3

}

contracted with one mixed vertex (A.22) coming from the action.

Computing for instance the first term we obtain

I
(1)
f = − N

M +N

(
M

k

)2 Γ3(1
2
− ǫ)

16π
5
2
−3ǫ

∫
dτ1>2>3(η2γ

ξγµγση̄3) ẋ
ν
1 ε

ρ
νµ Γρξσ (7.2)

where we have defined (see eq. (5.2))

Γµνρ ≡ (1− 2ǫ)3 Iµνρ = ∂µ1 ∂
ν
2 ∂

ρ
3

∫
d3x

[(x− x1)2(x− x2)2(x− x3)2]
1
2
−ǫ

(7.3)

The integral I
(2)
f for the second term in (7.1) can be easily obtained from I

(1)
f by

exchanging M ↔ N , 2 ↔ 3 and multiplying by (−1). Analogously, the sum of the
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third and fourth terms and the sum of the fifth and the sixth terms can be easily

obtained from I
(1)
f + I

(2)
f by permuting the indices 1, 2, 3 (the second term picks up

a minus sign from the exchange of the two fermions). Therefore, it is sufficient to

concentrate on (7.2). The spinorial structure appearing there can be simplified by

using the identity in (A.3) for the product of three gamma matrices. As a consequence,

the contribution (7.2) takes the form

I
(1)
f = − N

M +N

(
M

k

)2 Γ3(1
2
− ǫ)

16π
5
2
−3ǫ

∫
dτ1>2>3 ×

{
(η2γµη̄3)ενρσ ẋ

ν
1

(
Γσρµ + Γσµρ

)

−i(η2η̄3)ẋν1
(
Γµ

νµ − Γµ
µν

)
− (η2γ

0η̄3)ερ0ν ẋ
ρ
1Γ

νµ
µ

}
(7.4)

where in the third piece we have taken into account that for the planarity of the contour

non–vanishing contributions arise only when one of the indices in the ε tensor is zero.

Summing the I
(2)
f piece amounts to adding a contribution −I(1)f

∣∣
2↔3,M↔N

. Exploiting

the symmetry properties of η(τi)η̄(τj), η(τi)γ
0η̄(τj) under the exchange i↔ j, as follows

from identities (B.7, B.8) and observing that Γν
µν(k, i, j) = Γν

νµ(k, j, i), it can be

rewritten as I
(2)
f = I

(1)
f

∣∣
M↔N

. Therefore, combining the color factors, we finally obtain

I
(1)
f + I

(2)
f = −MN

k2
Γ3(1

2
− ǫ)

16π
5
2
−3ǫ

∫
dτ1>2>3 ×

{
(η2γµη̄3)ενρσ ẋ

ν
1

(
Γσρµ + Γσµρ

)

−i(η2η̄3)ẋν1
(
Γµ

νµ − Γµ
µν

)
− (η2γ

0η̄3)ερ0ν ẋ
ρ
1Γ

νµ
µ

}
(7.5)

The same pairing occurs for I
(3)
f + I

(4)
f and I

(5)
f + I

(6)
f , whose results can be easily

obtained from the previous one by permuting the indices 1,2,3 (with care to the signs,

as already mentioned).

The expression (7.5) is particularly complicated to compute. In order to simplify

the procedure it is convenient to separate it into the sum of two pieces, one propor-

tional to Γµνρ integrals (7.3) with indices contracted with external tensor structures

(uncontracted integrals, denoted Uf) and one proportional to Γµνρ integrals with a pair

of contracted indices (contracted integrals, denoted Cf). We then write

I
(1)
f + I

(2)
f + I

(3)
f + I

(4)
f + I

(5)
f + I

(6)
f ≡ −MN

k2
Γ3(1

2
− ǫ)

16π
5
2
−3ǫ

(
Uf + Cf

)
(7.6)

We devote the next two Sections to the hard task of evaluating Uf and Cf .

7.1 The uncontracted integrals Uf

We first concentrate on the evaluation of the part of diagram 2(f) corresponding to

Γµνρ integrals with indices contracted with external tensor structures, namely the con-
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tributions denoted by Uf . Precisely, summing over all contributions we need evaluate

(see (7.5)-(7.6))

Uf =

∫
dτ1>2>3

{
(η2γµη̄3)ενρσ ẋ

ν
1

(
Γσρµ + Γσµρ

)
(7.7)

−(η3γµη̄1)ενρσ ẋ
ν
2

(
Γσρµ + Γσµρ

)
+ (η1γµη̄2)ενρσ ẋ

ν
3

(
Γσρµ + Γσµρ

)}

The procedure required is quite complicated and far from being straightforward. We

proceed step by step by collecting the most technical details in Appendices E and F,

in order not to compromise the comprehension.

As described in details in Appendix D (see (D.4)-(D.8)) each of these terms can be

manipulated as

(ηiγµη̄j)ενρσ ẋ
ν
k

(
Γσρµ + Γσµρ

)
= −4(D − 2) sin

τij
2

(
sin2 τki

2
+ sin2 τkj

2

)
I(x) (7.8)

where I(x) is the scalar triangle integral

I(x) =
4π3/2−ǫ Γ(2− 2ǫ)

Γ3(1
2
− ǫ)

∫
[dα]

(α1α2α3)
1/2−ǫ

(α1α2x
2
12 + α2α3x

2
23 + α1α3x

2
13)

2−2ǫ (7.9)

The overall factor (D − 2) = (1 − 2ǫ) in (7.8) arises when contracting ε tensors in

DRED, as detailed in Appendix D. Its appearance is crucial in our computation. In

fact, since it contains an evanescent term, it gives rise to non–trivial finite contributions

when multiplied by divergent integrals.

Now, using the the Mellin–Barnes representation (D.10) for the I(x) integral, in-

troducing the convenient notation

S(α, β, γ) =
[
sin2

(τ12
2

)]α [
sin2

(τ23
2

)]β [
sin2

(τ13
2

)]γ
(7.10)

and observing that on the ordered contour of integration all the sines are always positive,

we turn Uf to the following form

Uf = − 24ǫ π
3
2
−ǫ(1− 2ǫ)

Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
)
∫

du dv

(2πi)2
Γ(−u)Γ(−v)Γ

(
−u+ǫ−1

2

)
(7.11)

Γ

(
−v+ǫ−1

2

)
Γ(u+v−2ǫ+2)Γ

(
u+v−ǫ+3

2

)
×

∫ 2π

0

∫ τ1

0

∫ τ2

0

dτ3dτ2dτ1
[
S(u+1, v+ 1

2
,−u−v−2+2ǫ) + S(u+ 1

2
, v+1,−u−v−2+2ǫ)

+ S(u+1, v,−u−v− 3
2
+2ǫ) + S(u, v+1,−u−v− 3

2
+2ǫ)

+ S(u+ 1
2
, v,−u−v−1+2ǫ) + S(u, v+ 1

2
,−u−v−1+2ǫ)

]
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Exploiting the possibility of performing change of variables in the Mellin–Barnes in-

tegrations, it is not difficult to conclude that the total integrand is symmetric under

exchanges of any couple of contour parameters τi. For instance, the τ1 ↔ τ2 exchange

accompanied by the shift v → −u − v + 2ǫ − 2 maps the integral into itself, as well

as the exchange τ2 ↔ τ3 together with the shift u → −u − v + 2ǫ − 2 and τ1 ↔ τ3
with the relabelling u ↔ v. As a nice consequence, we can symmetrize the contour of

integration as usual by replacing

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 →
1

3!

∫ 2π

0

dτ1

∫ 2π

0

dτ2

∫ 2π

0

dτ3 (7.12)

and we are left with the following expression to be evaluated

Uf = − 24ǫ π
3
2
−ǫ(1− 2ǫ)

3! Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
)
∫

du dv

(2πi)2
Γ(−u)Γ(−v)Γ

(
−u+ǫ−1

2

)
Γ

(
−v+ǫ−1

2

)

Γ(u+v−2ǫ+2)Γ

(
u+v−ǫ+3

2

) [
J (u+1, v+ 1

2
,−u−v−2+2ǫ)+

+ J (u+ 1
2
, v+1,−u−v−2+2ǫ) + J (u+1, v,−u−v− 3

2
+2ǫ)+

+ J (u, v+1,−u−v− 3
2
+2ǫ) + J (u+ 1

2
, v,−u−v−1+2ǫ)+

+ J (u, v+ 1
2
,−u−v−1+2ǫ)

]
(7.13)

where J is the symmetrized integral

J (α, β, γ) =

∫ 2π

0

dτ1

∫ 2π

0

dτ2

∫ 2π

0

dτ3

[
sin2

(τ12
2

)]α [
sin2

(τ23
2

)]β [
sin2

(τ13
2

)]γ
(7.14)

The details of the calculation can be found in Appendix E. The final result for

J (α, β, γ) reads

J (α, β, γ) = 8π3/2 Γ(
1
2
+ α)Γ(1

2
+ β)Γ(1

2
+ γ)Γ(1 + α + β + γ)

Γ(1 + α+ γ)Γ(1 + β + γ)Γ(1 + α + β)
(7.15)

Plugging this into (7.13) the uncontracted integrals can be written as

Uf = −24ǫ+3 π3−ǫ(1− 2ǫ)Γ
(
1
2
+ 2ǫ

)

Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
) G(1, 1

2
) (7.16)

where G(1, 1
2
) is a Mellin–Barnes integral, which can be evaluated by expanding the

integrand in powers of ǫ, so obtaining (see Appendix E for details)

G(1, 1
2
) =

π3/2

2

(
1

ǫ
− 4 + 3γE + 6 log 2

)
(7.17)

– 17 –



The 1
ǫ
pole signals the presence of a short distance divergence at this intermediate stage.

As we are going to show, this divergence gets cancelled by an analogous contribution

coming from the contracted integrals Cf . However, it plays an important role in deter-

mining the final result since, being multiplied by the factor (1 − 2ǫ) arising from the

application of DRED rules, it contributes non–trivially with finite terms which survive

the physical limit ǫ→ 0.

The final result for the uncontracted part of diagram 2(f) expanded up to finite

terms is

Uf = 4π3

(
−1

ǫ
+ 6 + γE − 2 log 2 + log π

)
+O(ǫ) (7.18)

7.2 The contracted integrals Cf

We now concentrate on the evaluation of Cf , coming from the sum of the last three

terms in (7.5) plus their permutations.

Tensor integrals Γµνρ in eq. (7.3) are immediately performed when a pair of indices

are contracted. In fact, in that case they are proportional to the operator ∂µ∂µ acting

on a scalar propagator in the integrand, so we can make use of the Green equation

�
1

(x2ij)
1/2−ǫ

= − 4π3/2−ǫ

Γ
(
1
2
− ǫ
) δ(xij) (7.19)

For the three structures appearing in (7.5) we find

Γνµ
µ = − 2π3/2−ǫ

Γ
(
1
2
− ǫ
) ∂ν1


 1

(x212)
1
2
−ǫ(x213)

1
2
−ǫ

− 1

(x212)
1
2
−ǫ(x223)

1
2
−ǫ

− 1

(x213)
1
2
−ǫ(x223)

1
2
−ǫ




Γµ
νµ = − 2π3/2−ǫ

Γ
(
1
2
− ǫ
) ∂ν2


 1

(x212)
1
2
−ǫ(x223)

1
2
−ǫ

− 1

(x213)
1
2
−ǫ(x223)

1
2
−ǫ

− 1

(x212)
1
2
−ǫ(x213)

1
2
−ǫ




Γµ
µν = − 2π3/2−ǫ

Γ
(
1
2
− ǫ
) ∂ν3


 1

(x213)
1
2
−ǫ(x223)

1
2
−ǫ

− 1

(x212)
1
2
−ǫ(x213)

1
2
−ǫ

− 1

(x212)
1
2
−ǫ(x223)

1
2
−ǫ




(7.20)

Parametrizing the coordinates on the unit circle, exploiting the identities (B.7, B.8)
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and summing over all contributions, after a quite lengthy calculation we obtain

Cf =
(1− 2ǫ)π

3
2
−ǫ

21−4ǫΓ(1
2
− ǫ)

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 × (7.21)

{
−1

2

sin (τ13)(
sin
(
τ12
2

)
sin
(
τ23
2

))2−2ǫ +
1

2

sin (τ12)(
sin
(
τ13
2

)
sin
(
τ23
2

))2−2ǫ +
1

2

sin (τ23)(
sin
(
τ12
2

)
sin
(
τ13
2

))2−2ǫ

− 2 sin
(
τ23
2

)
(
sin
(
τ12
2

)
sin
(
τ13
2

))1−2ǫ −
2 sin

(
τ13
2

)
(
sin
(
τ12
2

)
sin
(
τ23
2

))1−2ǫ −
2 sin

(
τ12
2

)
(
sin
(
τ13
2

)
sin
(
τ23
2

))1−2ǫ

+
cos
(
τ23
2

)

sin2−2ǫ
(
τ12
2

)
sin1−2ǫ

(
τ13
2

) + cos
(
τ23
2

)

sin1−2ǫ
(
τ12
2

)
sin2−2ǫ

(
τ13
2

) − cos
(
τ13
2

)

sin1−2ǫ
(
τ12
2

)
sin2−2ǫ

(
τ23
2

)

+
cos
(
τ12
2

)

sin2−2ǫ
(
τ13
2

)
sin1−2ǫ

(
τ23
2

) + cos
(
τ12
2

)

sin1−2ǫ
(
τ13
2

)
sin2−2ǫ

(
τ23
2

) − cos
(
τ13
2

)

sin2−2ǫ
(
τ12
2

)
sin1−2ǫ

(
τ23
2

)
}

These integrals can be computed by expanding the trigonometric functions in power

series and following the method described in Appendix C. It turns out that, once

expressed as series, six of these expressions reduce to the others, so that it is sufficient

to compute six independent integrals out of twelve. Nonetheless, the calculation is

quite involved; we detail it in Appendix F, while here we simply quote the final result

Cf =
2π

3
2
−ǫ(1− 2ǫ)

Γ
(
1
2
− ǫ
) ×

{
8
π2(ǫ− 1)ǫ(2ǫ− 1)Γ2(−1 + 2ǫ)

Γ4(1 + ǫ)
− 21+4ǫ π3/2 Γ

(
1
2
+ 2ǫ

)

ǫ2Γ(2ǫ)

+ 8
π sin(πǫ)Γ(2− ǫ)Γ(2ǫ)Γ(−1 + 2ǫ)

Γ3(1 + ǫ)
+

21+4ǫ π2
(
sin2(2πǫ)− 2 cos(2πǫ)

)

ǫ sin2(2πǫ)

+
4π2

2− ǫ
3F2

[
2− 2ǫ, 2− 2ǫ, 2− ǫ

1, 3− ǫ
; 1

]
+

4π2

ǫ
3F2

[
2− 2ǫ, 2− 2ǫ,−ǫ

1, 1− ǫ
; 1

]

– 19 –



+ 8
cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

πǫ2(4ǫ− 3)
4F3

[
1− 2ǫ, 3

2
− 2ǫ,−ǫ,−ǫ

1
2
, 1− ǫ, 1− ǫ

; 1

]

+ 8
cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

π(ǫ− 1)2(4ǫ− 3)
4F3

[
1− 2ǫ, 3

2
− 2ǫ, 1− ǫ, 1− ǫ

1
2
, 2− ǫ, 2− ǫ

; 1

]

− 32

√
πΓ(2ǫ)

(2ǫ− 1)2 Γ
(
−1

2
+ 2ǫ

) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 1

2
− ǫ, 1

2
− ǫ

3
2
, 3
2
− ǫ, 3

2
− ǫ

; 1

]

− 32

√
πΓ(2ǫ)

(2ǫ− 3)2 Γ
(
−1

2
+ 2ǫ

) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 3

2
− ǫ, 3

2
− ǫ

3
2
, 5
2
− ǫ, 5

2
− ǫ

; 1

]}

(7.22)

given in terms of generalized hypergeometric functions, pFq. The defining series for

the 3F2 and 4F3 functions appearing here converge for the half–plane ℜ(ǫ) > 1/2 and

ℜ(ǫ) > 0 respectively. Consequently, expression (7.22) is not well–defined close to ǫ = 0.

As anticipated, the general strategy for continuing it to that region and performing the

ǫ–expansion will be given in the next Section.

8. Analytic continuations

We now address the problem of expanding the expressions (6.9, 7.22) in powers of ǫ

around ǫ = 0, which is the physical limit we are interested in. Looking at the structure

of the corresponding integrals it is easy to realize that many hypergeometric functions

appearing there are well–defined only in regions of the complex plane that do not

include the origin. In the spirit of dimensional regularization, we analytically continue

these functions to include at least a neighbourhood of ǫ = 0, and then expand in powers

of ǫ.

8.1 General procedure

To carry out such a project we first observe that our results involve two prototypes of

hypergeometric functions

Ω1(ǫ) = 3F2

[
a, b, d

c, d+1
; 1

]
and Ω2(ǫ) = 4F3

[
a, b, d, d

c, d+1, d+1
; 1

]
(8.1)

where a, b, c and d are linear functions of ǫ. Both hypergeometric series converge in

the half–plane ℜ(1 + c− a− b) > 0.

As already outlined, the particular values of a, b, c, d involved in the results (6.9,

7.22) imply convergence of the corresponding series away from ǫ = 0. Therefore, taking
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the straight series definition of the hypergeometrics, and making the expansion for

small ǫ is ill–defined and analytic continuation around ǫ = 0 is then required.

By applying few algebraic transformations on the original hypergeometric functions

we manage to express them in terms of extended hypergeometric functions and their

derivatives. These generalized functions match the original ones in the domain of the

complex ǫ–plane where they converge, but they are well-defined in a greater region,

including a neighbourhood of ǫ = 0.

We begin by considering Ω1(ǫ). Its series definition reads

Ω1(ǫ) = d
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a+ n)Γ(b+ n)

n! Γ(c+ n)

1

(d+ n)
(8.2)

We can Schwinger–parametrize the rational piece inside the series

1

(d+ n)
=

∞∫

0

dt e−t(n+d) (8.3)

to obtain

Ω1(ǫ) = d

∞∫

0

dt e−td
2F1

[
a, b

c
; e−t

]
(8.4)

We now use Euler fractional linear transformation of the Gauß hypergeometric 2F1

function2

2F1

[
a, b

c
; z

]
= (1− z)c−a−b

2F1

[
c−a, c−b

c
; z

]
(8.5)

to obtain

Ω1(ǫ) = d
Γ(c)

Γ(c− a)Γ(c− b)

∞∑

n=0

Γ(c− a+ n)Γ(c− b+ n)

n! Γ(c+ n)

∞∫

0

dt e−t(n+d)(1− e−t)c−a−b.

(8.6)

Integrating in t we have the new series definition for Ω1(ǫ)

Ω1(ǫ) = d
Γ(1− a− b+ c)Γ(c)

Γ(c− a)Γ(c− b)

∞∑

n=0

Γ(c− a+ n)Γ(c− b+ n)Γ(d+ n)

n! Γ(c+ n)Γ(1− a− b+ c + d+ n)
(8.7)

Similarly, for Ω2(ǫ) we write the defining series

Ω2(ǫ) = d2
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a+ n)Γ(b+ n)

n! Γ(c+ n)

1

(d+ n)2
(8.8)

2See Abramowitz & Stegun, page 559.
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We can again Schwinger–parametrize the rational piece inside the series

1

(d+ n)2
=

∞∫

0

dt t e−t(n+d) (8.9)

to obtain

Ω2(ǫ) = d2
∞∫

0

dt t e−td
2F1

[
a, b

c
; e−t

]
(8.10)

Once again, Euler fractional linear transformation of the Gauß hypergeometric 2F1

function allows us to write

Ω2(ǫ) = d2
Γ(c)

Γ(c− a)Γ(c− b)

∞∑

n=0

Γ(c− a + n)Γ(c− b+ n)

n! Γ(c+ n)

∞∫

0

dt t e−t(n+d)(1− e−t)c−a−b

(8.11)

Integrating in t we have the new series definition for Ω2(ǫ)

Ω2(ǫ) = d2
Γ(1− a− b+ c)Γ(c)

Γ(c− a)Γ(c− b)
× (8.12)

∞∑

n=0

Γ(c− a+ n)Γ(c− b+ n)Γ(d+ n)

n! Γ(c+ n)Γ(1− a− b+ c+ d+ n)

(
ψ(0)(1−a−b+c+d+n)− ψ(0)(d+n)

)

where ψ(0) is the digamma function (see eq. (G.1)).

Studying the convergence of the new series (8.7, 8.12) shows that they are well–

defined for any value of a, b, c and d; therefore they admit a Laurent expansion centered

in ǫ = 0 which is what we intended to obtain.

When applying these techniques to our case, it turns out that although most of

the series needed to complete the computation can be found in literature, few of them

cannot and require a direct evaluation. We list them in Appendix G.

The technique just explained for analytic continuation can be applied to more

general hypergeometric functions 3, but this is beyond the scope of the present analysis.

8.2 Specific results for diagrams 2(e), 2(f)

Equipped with these tools, we now perform analytic continuation of the hypergeometric

functions appearing in the results (6.9, 7.22).

3See for instance Bailey, Generalized hypergeometric series, pag. 98.
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Diagram 2(e): Result (6.9). While the Γ functions appearing in (6.9) can be easily

expanded in powers of ǫ, the hypergeometric function has to be analytically continued

using the above procedure. We rewrite the first line in (6.9) as

−8π1+2ǫ Γ
2(3

2
− ǫ)

Γ2(2− 2ǫ)
ρ1(ǫ) (8.13)

where we have defined ρ1 to be the hypergeometric series

ρ1(ǫ) ≡
Γ2(2− 2ǫ)

(1− ǫ)2
4F3

[
2−2ǫ, 2−2ǫ, 1−ǫ, 1−ǫ

1, 2−ǫ, 2−ǫ ; 1

]
=

∞∑

n=0

Γ2(2− 2ǫ+ n)

(n!)2(1− ǫ+ n)2
(8.14)

The defining series of this function is convergent for the half–plane ℜ(ǫ) > 1/2. It

belongs to the class Ω2 defined in (8.1), hence we can apply formula (8.12) to perform

analytic continuation. We then write

ρ1(ǫ) =
Γ2(2−2ǫ)Γ(−2+4ǫ)

Γ2(−1+2ǫ)

∞∑

n=0

Γ(n−ǫ+ 1)Γ2(n+2ǫ−1)
(
ψ(0)(n+3ǫ−1)− ψ(0)(n−ǫ+1)

)

(n!)2 Γ(n+3ǫ−1)

(8.15)

Expanding around ǫ = 0 we need take special care of the first two terms of the series,

namely the ones corresponding to n = 0 and n = 1, which develop simple poles in

ǫ. These singularities are however cancelled by ǫ contributions from the overall factor

in front. Taking into account that the remaining series contributes only to O(ǫ), we

obtain

ρ1(ǫ) = −1

2
− (1 + 2γ)ǫ+O

(
ǫ2
)

(8.16)

and the contribution from diagram 2(e) finally reads

(e) =
3

2
π2 MN

k2
+O(ǫ) (8.17)

Diagram 2(f): Result (7.22). There are six hypergeometric functions in the con-

tracted part of diagram 2(f), eq. (7.22), that require analytic continuation. The two

3F2 ones have defining series which converge for ℜ(ǫ) > 1/2 while the four 4F3 ones

converge for ℜ(ǫ) > 0. We analyze them separately, following the order in which they

appear in the result.

• First, we consider

ρ2(ǫ) ≡
4π2

2− ǫ
3F2

[
2−2ǫ, 2−2ǫ, 2−ǫ

1, 3−ǫ ; 1

]
(8.18)
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The series defining this hypergeometric function converges for ℜ(ǫ) > 1
2
. Applying (8.7)

we obtain

ρ2(ǫ) =
4π2Γ(−2 + 4ǫ)

Γ2(−1 + 2ǫ)

∞∑

n=0

Γ(2 + n− ǫ)Γ2(−1 + n+ 2ǫ)

(n!)2Γ(n+ 3ǫ)
. (8.19)

Isolating the first two divergent terms in the sum as done in the previous case and

ǫ–expanding the argument of the remaining series we can write

ρ2(ǫ) =
4π2Γ(2− ǫ)Γ(−2 + 4ǫ)

Γ(3ǫ)
+

2π2(−1 + 2ǫ)Γ(3− ǫ)Γ(−1 + 4ǫ)

Γ(1 + 3ǫ)

+ 2π2ǫ

∞∑

n=2

n+ 1

n(n− 1)2
+O(ǫ2) (8.20)

Finally, summing the series, we obtain

ρ2(ǫ) =
π2

ǫ
+ 2π2 +

(
11π2 +

4π4

3

)
ǫ+O(ǫ2) (8.21)

• Next we analyze

ρ3(ǫ) ≡
4π2

ǫ
3F2

[
2−2ǫ, 2−2ǫ,−ǫ

1, 1−ǫ ; 1

]
(8.22)

Applying (8.7) yields

ρ3(ǫ) = −4π2Γ(−2 + 4ǫ)

Γ2(−1 + 2ǫ)

∞∑

n=0

Γ(n− ǫ)Γ2(−1 + n+ 2ǫ)

(n!)2Γ(−2 + n + 3ǫ)
(8.23)

and its expansion reads

ρ3(ǫ) =
3π2

ǫ
+ 6π2 +

(
21π2 +

4π4

3

)
ǫ+O(ǫ2) (8.24)

We now turn to the four contributions proportional to the 4F3 hypergeometric

series, which have more complicated expansions.

After applying prescription (8.12), we need sum series whose generic term is a

function of ǫ. Similarly to the previous situations, in general it occurs that the first

few terms of the series develop ǫ–pole singularities, so we analyze them separately.

In the remaining series we expand the summand in powers of ǫ. Given that some of

their overall coefficients have poles in ǫ, we have to expand up to higher orders. This

converts the original series into the linear combination of a finite number of series that

contain higher polygamma functions ψ(n) defined in (G.1). Closer we go to O(ǫ0),

more complicated these series become. Therefore, while the evaluation of the first few
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ones is relatively easy and can be done by Mathematica, the rest has required explicit

evaluation. The results are listed in Appendix G.

• We consider the first term proportional to 4F3 appearing in (7.22)

ρ4(ǫ) = 8
cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

πǫ2(4ǫ− 3)
4F3

[
1−2ǫ, 3/2−2ǫ,−ǫ,−ǫ

1/2, 1−ǫ, 1−ǫ ; 1

]
(8.25)

Its analytic continuation gives

ρ4(ǫ) =
π3/242ǫ csc(2πǫ)

Γ(1− 2ǫ)Γ
(
−1

2
+ 2ǫ

)×
∞∑

n=0

Γ(n−ǫ)Γ(n+2ǫ−1)Γ
(
n+2ǫ− 1

2

)
(ψ(0)(n+3ǫ−1)− ψ(0)(n−ǫ))

n! Γ
(
n+ 1

2

)
Γ(n+3ǫ−1)

(8.26)

and its expansion around ǫ = 0 reads

ρ4(ǫ) =
1

ǫ3
+

4 log 2− 3
2

ǫ2
+

−π2 − 6 + 16 log 2(log 2− 1)

2ǫ

+

(
7ζ(3) +

2

3

(
−9 + 4 log2 2(4 log 2− 9)− π2(3 log 2− 1)− 24 log 2

))
(8.27)

• Then we consider the second term in (7.22) proportional to 4F3

ρ5(ǫ) = 8
cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

π(ǫ− 1)2(4ǫ− 3)
4F3

[
1−2ǫ, 3/2−2ǫ, 1−ǫ, 1−ǫ

1/2, 2−ǫ, 2−ǫ ; 1

]
(8.28)

Its analytic continuation is

ρ5(ǫ) =
π3/242ǫ(1− 2ǫ)ǫ2 csc(2πǫ)

(ǫ− 1)2Γ(2− 2ǫ)Γ
(
−1

2
+ 2ǫ

)×

×
∞∑

n=0

Γ(n−ǫ)Γ(n+2ǫ−1)Γ
(
n+2ǫ− 1

2

)
(ψ(0)(n+3ǫ−1)− ψ(0)(n−ǫ))

n! Γ
(
n+ 1

2

)
Γ(n+3ǫ−1)

(8.29)

and, consequently, its ǫ–expansion reads

ρ5(ǫ) =
1

2ǫ2
+

1

ǫ

(
1− π2

6

)
+

(
7ζ(3) + 2− 8 log2 2− 2

3
π2 log 2

)
(8.30)

• The third term in (7.22) proportional to 4F3 is

ρ6(ǫ) = −32

√
πΓ(2ǫ)

(2ǫ− 1)2 Γ
(
−1

2
+ 2ǫ

) 4F3

[
3/2−2ǫ, 2−2ǫ, 1/2−ǫ, 1/2−ǫ

3/2, 3/2−ǫ, 3/2−ǫ ; 1

]
(8.31)
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Its analytical continuation reads

ρ6(ǫ) = − π3/242ǫ csc(2πǫ)

Γ(1 − 2ǫ)Γ
(
−1

2
+ 2ǫ

)×

×
∞∑

n=0

Γ
(
n−ǫ+ 1

2

)
Γ
(
n+2ǫ− 1

2

)
Γ(n+2ǫ)

(
ψ(0)

(
n+3ǫ− 1

2

)
− ψ(0)

(
n−ǫ+ 1

2

))

n! Γ
(
n+ 3

2

)
Γ
(
n+3ǫ− 1

2

) (8.32)

allowing to obtain the expansion

ρ6(ǫ) =
1

2ǫ2
+

2 + π2 + 8 log 2

2ǫ

+

(
2− 7ζ(3) + 16 log2 2 + 8 log 2 +

2

3
π2(3 log 2− 2)

)
+O (ǫ) (8.33)

• Finally, the last term in (7.22) is

ρ7(ǫ) = −32

√
πΓ(2ǫ)

(2ǫ− 3)2 Γ
(
−1

2
+ 2ǫ

) 4F3

[
3/2−2ǫ, 2−2ǫ, 3/2−ǫ, 3/2−ǫ

3/2, 5/2−ǫ, 5/2−ǫ ; 1

]
(8.34)

Using (8.12) its analytic continuation reads

ρ7(ǫ) = − π5/222ǫ+1 (1− 2ǫ)2 csc(2πǫ)Γ(−1 + 4ǫ)

(1 − 2ǫ)Γ(1− ǫ)Γ
(
3
2
− ǫ
)
Γ(2ǫ)Γ2

(
−1

2
+ 2ǫ

)×

×
∞∑

n=0

Γ
(
n− ǫ+ 1

2

)
Γ
(
n+ 2ǫ− 1

2

)
Γ(n+ 2ǫ)

n! Γ
(
n + 3

2

)
Γ
(
n + 3ǫ− 1

2

) (
ψ(0)

(
n+ 3ǫ+ 1

2

)
− ψ(0)

(
n− ǫ+ 3

2

))

(8.35)

and for its ǫ–expansion we obtain

ρ7(ǫ) =
1

2ǫ2
+

1

ǫ

(
−π

2

2
+ 1 + 4 log 2

)

+

(
2− 7ζ(3) + 16 log2 2 + 8 log 2− 2

3
π2(3 log 2− 1)

)
+O (ǫ) (8.36)

We can now perform the sum of all these contributions as they appear in (7.22)

in order to obtain the result for Cf . Note that the individual pieces diverge with up

to ǫ−3 poles and contain transcendental constants like ζ(3) and higher powers of log 2.

Remarkably, all these terms cancel in the final result, and it simply reads

Cf = 4π3

(
1

ǫ
+ 2− γE + 2 log 2− log π

)
+O(ǫ) (8.37)
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The result is still divergent, but when combined with the uncontracted part Uf in eq.

(7.18) the poles cancel and we obtain

Cf + Uf = 32π3 +O(ǫ) (8.38)

Therefore, multiplying by the overall factor − 1
16π

MN
k2

in (7.6) we finally have

(f) = −2π2MN

k2
+O(ǫ) (8.39)

9. Final result and comparison with results from localization

We can now add contributions (3.5), (5.9), (8.17) and (8.39) to obtain the expectation

value of the 1/2 BPS WL up to two loops and for any value of M and N

〈
W1/2[Γ]

〉
f=0

= 1− π2

6 k2
(
N2 +M2 − 4NM − 1

)
(9.1)

Here, the subscript refers to the fact that, as we review below, the perturbative evalu-

ation in dimensional regularization corresponds to choosing framing zero.

The finiteness of the result is a consequence of the fact that the contributing di-

agrams are separately finite. In fact, short distance divergences arise only in diagram

2(f) and at an intermediate stage, while its total contribution is eventually finite.

It is interesting to compare the result we have obtained with the exact result for

the expectation value of 1/2 BPS WL derived using localization techniques. Let us

first review briefly the latter.

Localization allows to reduce the computation of the partition function of a super-

symmetric gauge theory on a sphere to the evaluation of a matrix model [6]. Similarly,

correlation functions and WL can be computed by matrix model methods, provided

the operators involved in the correlators are invariant under the same supercharge used

for localizing the functional integral. If the matrix model is simple enough, a closed

exact expression can be given for the expectation value of WL at all values of the cou-

pling constant. Otherwise, a perturbative expansion is possible in some regions of the

parameters, such as at small and large values of the coupling. This provides results

interpolating from weak to strong coupling, which can be used as tests of the AdS/CFT

correspondence for theories that allow for a dual gravity description.
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For supersymmetric CS theories and in particular ABJ(M) models on S3 the par-

tition function was found to be equivalent to the non–Gaussian matrix model [33]

Z =

∫ N∏

a=1

dλa e
iπkλ2

a

M∏

b=1

dλ̂b e
−iπkλ̂2

b × (9.2)

∏N
a<b sinh

2(π(λa − λb))
∏M

a<b sinh
2(π(λ̂a − λ̂b))∏N

a=1

∏M
b=1 cosh

2(π(λa − λ̂b))

Since W1/6[Γ] and W1/2[Γ] are invariant under the supercharge used to localize the

functional integral [33], their expectation values can be computed by matrix model

techniques. In particular, in [35] a relation was proven connecting the 1/6 BPS and the

1/2 BPS circular WL. Indeed, it was found that they belong to the same cohomology

class with respect to the supercharge Q used for localization. As a consequence, the

evaluations of the corresponding expectation values via localization turn out to be

equivalent.

For computing 1/6 BPS WL we need insert in (9.2) the factors

w1/6 =
1

N

N∑

a=1

e2πλa and ŵ1/6 =
1

M

M∑

a=1

e2πλ̂a (9.3)

which correspond to the U(N) and U(M) groups, respectively. Instead, for the 1/2

BPS WL we need insert

w1/2 =
1

N +M

(
N∑

a=1

e2πλa +
M∑

a=1

e2πλ̂a

)
=
N w1/6 +M ŵ1/6

(N +M)
(9.4)

In ordinary perturbation theory, the evaluation of WL can in principle be hampered

by singularities emerging from regions where two or more connections coincide on the

circular path Γ. One possible regularization has been investigated in knot theory where

the problem of defining a topologically invariant regularization of a knot self–linking

number has been addressed. The regularization proposed in this scheme is known as

framing procedure [11, 42, 43]. It consists in deforming the original path Γ into a nearby

contour Γ′ by the introduction of a normal vector field along the contour, so allowing

for a point splitting regularization of the correlation function. This procedure has

been shown to provide sensible results for the pure non–abelian Chern–Simons theory

[42, 43]. It turns out that WL expectation values do not depend on the particular

choice of the framing contour, but only on its topological properties with respect to the

original path. Wounding the framing contour on the original path f times corresponds

to framing f, and
〈
W [Γ]

〉
f
indicates the corresponding expectation value. It was shown
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that in this pure Chern-Simons context, different choices of framing will affect the result

for
〈
W [Γ]

〉
simply by an overall phase factor depending on f.

Field theory computations are usually performed using alternative regularization

schemes, so without framing (hereafter referred to as framing zero). This entails great

simplifications since many diagrams involve contractions of the ε tensor with three

vectors on the WL contour. Since in this case the contour is a circle that lies in a

plane, such products vanish by antisymmetry, whereas if any of the vectors had been

displaced from the plane, such as in the framing procedure, these terms wouldn’t have

vanished any longer.

In order for the framing procedure to be compatible with localization, it has to

respect supersymmetry. This requires the original and the framing contours, Γ and Γ′,

to be two fibers in the Hopf fibration of the S3. Such great circles are linked once,

hence the WL expectation value computed by localization corresponds to framing one

[33]. Therefore, in order to make a comparison with field theoretical computations one

has to identify and remove the framing phase.

For the 1/6 BPS WL, the expectation values coming from localization expanded

at weak coupling up to second order read [33, 36]

〈
W1/6[Γ]

〉
f=1

= e
iπ
k
N

[
1 +

π2

6 k2
(
−N2 + 6MN + 1

)]

〈
Ŵ1/6[Γ]

〉
f=1

= e−
iπ
k
M

[
1 +

π2

6 k2
(
−M2 + 6MN + 1

)]
(9.5)

Analogously, summing the contributions and normalizing as in (2.3) we obtain the

expectation value of W+
1/6 in ABJ(M) at framing one

〈W+
1/6[Γ]〉f=1 =

N〈W1/6[Γ]〉f=1 +M〈Ŵ1/6[Γ]〉f=1

N +M
(9.6)

The overall phases appearing in (9.5) are precisely those due to framing one. Consis-

tently, the expectation values at framing zero are obtained removing such phases. In

particular, if we remove these phases separately in the two terms appearing in (9.6)

and sum the two contributions at framing zero we find perfect agreement with the per-

turbative field theory computation (5.9). This includes the color subleading term also,

which had not been considered before. We note that at this order subleading terms are

framing independent, in the sense that they are not affected by a change of framing.

We now consider computing the 1/2 BPS operator in terms of the matrix model.

This amounts to plugging the operator (9.4) into the matrix model (9.2). Thanks to

the algebraic identity appearing on the right hand side of eq. (9.4), it is easy to realize
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that the expectation values, corresponding to framing one, are related by

〈
W1/2[Γ]

〉
f=1

=
N
〈
W1/6[Γ]

〉
f=1

+M
〈
Ŵ1/6[Γ]

〉
f=1

N +M
(9.7)

Therefore, the 1/2 BPS WL expectation value can be easily inferred from the 1/6 BPS

WL results (9.5) and coincides with 〈W+
1/6[Γ]〉 at framing one, eq. (9.6).

Plugging (9.5) into the previous equation, we obtain

〈
W1/2[Γ]

〉
f=1

= 1 +
iπ

k
(N −M)

− π2

6k2
(4N2 + 4M2 − 10NM − 1) +O(1/k3) (9.8)

In order to compare this expression with the field theory computation we have to

identify and remove the framing–one factor. While for 〈W+
1/6[Γ]〉 the correct prescription

is to remove the phase factors in the two terms of the linear combination (9.6) separately,

for the 1/2 BPS WL the framing factor has been identified in [36] as

〈
W1/2[Γ]

〉
f=1

= e
iπ
k
(N−M)

〈
W1/2[C]

〉
f=0

= e
iπ
k
(N−M)

[
1− π2

6 k2
(
N2 +M2 − 4NM − 1

)
+O(1/k3)

]
(9.9)

In particular, no remotion is required for M = N .

The most important observation is that the expression within square brackets per-

fectly agrees with our field theory result (9.1) for any value of M,N . The perfect

matching confirms that identification (9.9) of the framing factor in the localization re-

sult is indeed the correct one.

10. Conclusions

For U(N)×U(M) ABJ(M) models we have computed analytically the vacuum expec-

tation value of the 1/2 BPS circular Wilson loop in perturbation theory, up to two

loops and for any value of M,N . Three years later, our result fills the gap between

localization and perturbative calculations that had been left open since Drukker and

Trancanelli made their prediction in [35]. In fact, the perturbative two–loop result

coincides with the weak coupling limit of the localization result, not only in the planar

limit, but also when finite M,N contributions are taken into account.

In order to match the result from localization with the perturbative one, one needs

to identify the non–trivial framing factor appearing in the localization expression and

– 30 –



remove it. We have verified that the perturbative result matches the prediction from

localization if we remove an overall phase as in eq. (9.9), in agreement with the proposal

of [35]. Therefore, our calculation is a non–trivial confirmation of that proposal.

The perturbative calculation involves a quite considerable number of integrals that

require the development of sophisticated techniques to be solved. This is the reason

why it has required few years for the problem to be tackled and solved.

We have developed non–trivial strategies to overcome difficulties related to the

appearance of divergent integrals, complicated parametric integrals and the necessity

of analytic continuations to the physical region of parameters.

We have handled short distance divergences by using dimensional regularization

with dimensional reduction. In three dimensions and for Chern–Simons theories this is

complicated by the appearance of the Levi–Civita tensor εµνρ that does not allow for

any extension to dimensions different from three. We have circumvented this difficulty

by performing tensorial algebra strictly in three dimensions and with a careful use of

algebraic identities up to the point in which ε–tensors were no more present in the loop

structures. Only at that stage we have extended divergent integrals to D = 3 − 2ǫ

dimensions. As a result of applying this procedure non–trivial evanescent factors arise,

which multiply divergent integrals. These evanescent terms are crucial in determining

the final result since they produce finite contributions when hit ǫ–poles.

We have evaluated the integrals analytically in regions of the regularization pa-

rameter that make them well-defined. The main technical tools that we used are series

expansions and Mellin–Barnes representation. Most of the results turn out to be given

in terms of hypergeometric functions that converge for (complex) dimensions that do

not include the physical dimensions, D = 3. Therefore, before taking the ǫ → 0 limit

suitable analytic continuation to regions that include a neighborhood of the origin is

required. The non–trivial techniques to perform such a continuation have been detailed

in Section 8. After analytic continuation the hypergeometric series can be expanded in

powers of ǫ. Divergent pole contributions that appear at an intermediate stage of the

expansion cancel out in the final result, which turns out to be finite, as expected.

The procedure introduced in this paper allows in general to compute integrals

appearing in circular Wilson loops at all orders in the regularization parameter. In

principle, it could be used to evaluate more general Wilson loop operators [44] and for

more general theories.
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A. Conventions and Feynman rules

We work in euclidean three–dimensional space with coordinates xµ = (x0, x1, x2). The

conventions are obtained by Wick rotating the ones in Minkowski [30].

Applying the prescription γ0E = −iγ0, the euclidean gamma matrices satisfying

Clifford algebra {γµ, γν} = 2δµνI, are defined as

(γµ) β
α = {−σ3, σ1, σ2} (A.1)

with matrix product

(γµγν) β
α ≡ (γµ) γ

α (γν) β
γ (A.2)

Useful identities are

γµγν = δµνI− iεµνργρ

γµγνγρ = δµνγρ − δµργν + δνργµ − iεµνρI

γµγνγργσ − γσγργνγµ = −2i (δµνερση + δρσεµνη + δνηερµσ + δµηενρσ) γη (A.3)

Tr(γµγν) = 2δµν

Tr(γµγνγρ) = −2iεµνρ (A.4)

Spinorial indices are lowered and raised as (γµ)αβ = εαγ(γµ) δ
γ εβδ, where

εαβ =

(
0 1

−1 0

)
εαβ =

(
0 −1

1 0

)
(A.5)

It follows that

(γµ)αβ = {−σ3, σ1,−σ2} = (γµ)T (A.6)

In addition,

(γµ)αβ = {−σ1,−σ3, iI} = (γµ)βα

(γµ)αβ = {σ1, σ3, iI} = (γµ)βα (A.7)

are symmetric matrices.

We conventionally choose the spinorial indices of chiral fermions to be always up,

while the ones of antichirals to be always down. Therefore, the spinorial product is

always meant to be

ψ1ψ̄2 ≡ ψα
1 ψ̄2α = −ψ̄2αψ

α
1 ≡ −ψ̄2ψ1 (for anticommuting spinors)

ψη̄ ≡ ψαη̄α = η̄αψ
α ≡ η̄ψ (for commuting spinors) (A.8)
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With this convention we write

η̄1γ
µη2 ≡ η̄1 α(γ

µ)αβη
β
2 = ηβ2 (γ

µ) α
β η̄1 α ≡ η2γ

µη̄1 (A.9)

Moreover, in the text we indicate

(η1γ
µη̄2) ≡ η1Iγ

µη̄I2 (A.10)

where a sum over the SU(4)R index is understood.

TheN = 6 supersymmetric Chern–Simons–matter theory [12, 13] with gauge group

U(N)× U(M) is described by the euclidean action (Γ =
∫
e−S)

S = SCS + Smatter + Sgf (A.11)

SCS = −i k
4π

∫
d3x εµνρ

[
Tr
(
Aµ∂νAρ +

2
3
iAµAνAρ

)
(A.12)

−Tr
(
Âµ∂νÂρ +

2
3
iÂµÂνÂρ

) ]

Smatter =

∫
d3xTr

[
DµCID

µC̄I + iψ̄IγµDµψI

]
+ Sint

Sgf =
k

4π

∫
d3xTr

[
1
ξ
(∂µA

µ)2 + ∂µc̄D
µc− 1

ξ
(∂µÂ

µ)2 − ∂µ¯̂cD
µĉ
]

where (CI)
j

ĵ
((C̄I)ĵj), I = 1, · · ·4, are four matter scalars in the bifundamental (an-

tibifundamental) representation of the gauge group, whereas (ψ̄I)j
ĵ
((ψI)

ĵ
j) are the

corresponding fermions.

The covariant derivatives are defined as

DµCI = ∂µCI + iAµCI − iCIÂµ

DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I

Dµψ̄
I = ∂µψ̄

I + iAµψ̄
I − iψ̄IÂµ

DµψI = ∂µψI − iψIAµ + iÂµψI (A.13)

With these assignments the action is invariant under the following gauge transforma-

tions

A′ = UAU † − i UdU † , Â′ = ÛÂ Û † − i ÛdÛ †

φ′ = UφÛ † , φ̄′ = Û φ̄U † (A.14)

where Uand Û are the transformation matrices for the groups U(N) and U(M) respec-

tively, and φ (φ̄) stands for any field in the (anti)bifundamental.
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The Wilson loop we are interested in is defined as

W1/2[Γ] =
1

N +M
Tr P exp

(
−i
∫
Γ
dτL(τ)

)
(A.15)

with L given in eq. (2.5). We stress that the sign in front of the integral is unambigu-

ously fixed by gauge invariance under transformations (A.14).

From the action (A.12) we obtain the following Feynman rules:

The propagators

• Tree–level vector propagators in Landau gauge

〈Aa
µ(x)A

b
ν(y)〉(0) = δab

(
2πi

k

)
Γ(3

2
− ǫ)

2π
3
2
−ǫ

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ǫ

〈Âa
µ(x)Â

b
ν(y)〉(0) = −δab

(
2πi

k

)
Γ(3

2
− ǫ)

2π
3
2
−ǫ

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ǫ

(A.16)

• One–loop vector propagators (see for instance [45])

〈Aa
µ(x)A

b
ν(y)〉(1) = δab

(
2π

k

)2

N
Γ2(1

2
− ǫ)

4π3−2ǫ

[
δµν

[(x− y)2]1−2ǫ
− ∂µ∂ν

[(x− y)2]ǫ

4ǫ(1 + 2ǫ)

]

〈Âa
µ(x)Â

b
ν(y)〉(1) = δab

(
2π

k

)2

M
Γ2(1

2
− ǫ)

4π3−2ǫ

[
δµν

[(x− y)2]1−2ǫ
− ∂µ∂ν

[(x− y)2]ǫ

4ǫ(1 + 2ǫ)

]

(A.17)

• Scalar propagator

〈(CI)
ĵ
i (x)(C̄

J )l
k̂
( y)〉(0) = δJI δ

l
iδ

ĵ

k̂

Γ(1
2
− ǫ)

4π
3
2
−ǫ

1

[(x− y)2]
1
2
−ǫ

(A.18)

• Tree–level fermion propagator

〈(ψα
I )

j

î
(x)(ψ̄J

β )
l̂
k(y)〉(0) = −i δJI δ l̂îδ

j
k

Γ(3
2
− ǫ)

2π
3
2
−ǫ

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ǫ

(A.19)

• One–loop fermion propagator [45]

〈(ψα
I )

j

î
(x)(ψ̄J

β )
l̂
k(y)〉(1) = −i

(
2π

k

)
δJI δ

l̂
î
δjk δ

α
β (M −N)

Γ2(1
2
− ǫ)

16π3−2ǫ

1

[(x− y)2]1−2ǫ

(A.20)
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The interaction vertices

• Gauge cubic vertex

−i k
12π

εµνρ
∫
d3x fabcAa

µA
b
νA

c
ρ (A.21)

• Gauge–fermion cubic vertex

−
∫
d3xTr

[
ψ̄IγµψIAµ − ψ̄IγµÂµψI

]
(A.22)

Finally, we recall our color conventions. We work with hermitian generators for

U(N) and U(M) gauge groups, satisfying

Tr(T aT b) = δab , T r(T̂ âT̂ b̂) = δâb̂ (A.23)

and

N2∑

a=1

(T a)ij(T
a)kl = δilδjk ,

M2∑

â=1

(T̂ â)ij(T̂
â)kl = δilδjk

fabcfabc = 2N3 , f âb̂ĉf âb̂ĉ = 2M3 (A.24)

B. Useful identities on the unit circle

We parametrize a point on the unit circle Γ as

xµi = (0, cos τi, sin τi) , ẋµi = (0,− sin τi, cos τi) , |xi|2 = 1 (B.1)

Simple identities that turn out to be useful along the calculation are

(xi − xj)
2 = 4 sin2 τi − τj

2
(B.2)

xi · xj = ẋi · ẋj = cos (τi − τj) (B.3)

xi · ẋj = sin (τi − τj) (B.4)

(xi · xj)(ẋi · ẋj)− (xi · ẋj)(ẋi · xj) = 1 (B.5)

(xi − xj) · (ẋi + ẋj) = 2 sin (τi − τj) (B.6)
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Using expression (2.7) for the η spinors and writing ηi ≡ η(τi), Mi ≡ M(τi) a list

of useful identities follows

(ηiη̄j) = 2i cos
τi − τj

2
(B.7)

(ηiγ0η̄j) = 2 sin
τi − τj

2
(B.8)

(ηiγ1η̄j) = −2i sin
τi + τj

2
(B.9)

(ηiγ2η̄j) = 2i cos
τi + τj

2
(B.10)

Tr(MiMj) = 4 (B.11)

(ηiγµη̄j) (xi − xj)
µ = 4i sin

τi − τj
2

(B.12)

More generally, we can write

(ηiγ
µη̄j) = − 2

(ηiη̄j)

[
ẋµi + ẋµj + i εµρν ẋ

ρ
i ẋ

ν
j

]
(B.13)

C. Method for solving circle integrals

In this Appendix we spell out the method we employ to solve complicated trigonometric

multiple integrals as the ones arising from diagrams 2(e), 2(f).

Given a multiple integral of the product of sine and cosine functions to some power,

the starting point consists in replacing each trigonometric function by its complex

exponential form

sin−α f({τ}) → (2i)α
(
eif({τ}) − e−if({τ})

)−α

cos−α f({τ}) → 2α
(
eif({τ}) + e−if({τ})

)−α
(C.1)

In the integrals we have to evaluate, f is a real linear function of the {τ} parameters, and

α is a complex parameter typically linear in the dimensional regularization parameter

ǫ.

Next we expand each factor, obtaining

sin−α f({τ}) → (2i)α
1

Γ(α)

∞∑

n=0

Γ(n+ α)

n!

(
e−if({τ})

)2n+α

cos−α f({τ}) → 2α
1

Γ(α)

∞∑

n=0

(−1)n
Γ(n+ α)

n!

(
e−if({τ})

)2n+α
(C.2)

If we exchange the parametric integral with the series, the integrals can be easily

performed.
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Some comments on the mathematical consistency of these steps are in order. It

should be mentioned that since f({τ}) is a real function, then the power expansions

(C.2) is made in terms of a unimodular variable. This means that the series converges

absolutely only for ℜ(α) < 0. However, being α a function of ǫ, we can perform the

calculation in regions of values for ǫ where the series converges absolutely and then

analytically continue the result to all ǫ.

We proceed with the evaluation of each single integral. This produces multiple

series, which we eventually sum in terms of hypergeometric functions. A posteriori, we

check the consistency of our procedure by performing an exhaustive numerical compar-

ison between the result obtained and the original integral for a sufficiently large range

of complex values of ǫ where the integral converges.

As an example, we solve the following parametric integral

I(1) =

∫ 2π

0

dτ1

∫ τ1

0

dτ2
1[

sin2 τ12
2

]α (C.3)

where α is a generic complex parameter. When α = (1 − ǫ) this is the integral that

appears in the one–loop contribution to the 1/2 BPS WL (see Section 3).

We can use the parameter α as a regulator, in the spirit of dimensional regulariza-

tion: We compute the integral in the domain where it converges, which is for ℜ(α) < 1
2

and then analytically extend it for any value of α.

We rewrite the integral as

I(1) = (2i)2α
2π∫

0

dτ1

τ1∫

0

dτ2
(e−iτ12)

α

(1− e−iτ12)2α
; (C.4)

Expanding the denominator and integrating term by term we have

I(1) =
(2i)2α

Γ(2α)

∞∑

n=0

Γ(n + 2α)

n!

2π∫

0

dτ1

τ1∫

0

dτ2
(
e−iτ12

)α+n
(C.5)

The integrals can be easily solved. Introducing the shorthand notation

Sλ[α] =

∞∑

n=0

Γ(n+ 2α)

n!(n + α)λ
(C.6)

we can write

I(1) =
4α

Γ(2α)

(
−2 iπeiπαS1[α] + 2 i sin(πα)S2[α]

)
(C.7)
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This is in general a complex function. We can further simplify its form by imposing it

to be real for α real. Since for α real the two series sum to real functions, selecting the

imaginary part of (C.7) and setting it to zero leads to a non–trivial relation between

the two series, S2[α] = π cotαS1[α]. In this simple case, this identity can be directly

checked by comparing the two explicit summations

S1[α] =
2−2αΓ

(
1
2
− α

)
Γ(α)Γ(2α)√

π

S2[α] =
√
π 2−2α cot(πα)Γ

(
1
2
− α

)
Γ(α)Γ(2α) (C.8)

However, in more complicated cases where summing the series is not an easy task, the

trick of imposing the reality of the result for α real turns out to be very convenient for

deriving identities between series that might be difficult to prove otherwise.

Using the previous findings, we finally obtain

I(1) =
22α+1 π

Γ(2α)
sin(πα)S1[α] =

2π3/2Γ
(
1
2
− α

)

Γ (1− α)
(C.9)

As can be checked numerically, this is the correct result for any (even complex) value

of α.

We note that for the one–loop contribution to the WL, setting α = (1 − ǫ) we

indeed find a O(ǫ) result.

As a second application, we prove that the sum of the three integrals in eqs. (6.3,

6.4) is subleading in ǫ. In fact, summing the three contributions we are left with an

integrand which is totally symmetric under exchanges of the integration variables. This

allows to symmetrize the integration domain

I(1)e + I(2)e + I(3)e =
3

4!

∫ 2π

0

dτ1

∫ 2π

0

dτ2
1(

sin2 τ12
2

)α
∫ 2π

0

dτ3

∫ 2π

0

dτ4
1(

sin2 τ34
2

)α (C.10)

leading to a factorized expression in terms of one–loop integrals of the type (C.3). Using

the general result (C.9) we then obtain

I(1)e + I(2)e + I(3)e =
2π3Γ2

(
−1

2
+ ǫ
)

Γ2(ǫ)
(C.11)

This expression is subleading in ǫ, as stated above.

D. Reduction to a scalar integral

In this Appendix we prove that the linear combination of vertex integrals

(η2γµη̄3) ενρσẋ
ν
1 (Γ

σρµ + Γσµρ) (D.1)
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appearing in eq. (7.4) can be reduced to a scalar triangle integral.

Applying Feynman combining inD = 3−2ǫ dimensions, every single vertex integral

can be written as Γµνρ = ∂µ1 ∂
ν
2∂

ρ
3G, where

G =

∫
d3−2ǫx

1

[(x− x1)2 (x− x2)2 (x− x3)2]
1/2−ǫ

=

=
π3/2−ǫ Γ(−2ǫ)

Γ3(1
2
− ǫ)

∫
[dα]3

(α1α2α3)
−1/2−ǫ

(Ω2)−2ǫ (D.2)

Here the measure is defined as [dα]3 =
∏3

i=1 dαi δ(
∑3

i=1 αi−1) and

Ω2 = α1α2x
2
12 + α2α3x

2
23 + α1α3x

2
13 (D.3)

When applying the derivatives to G we are interested only in terms proportional to the

metric tensor, since terms proportional to the product of coordinate vectors would be

zero for the planarity of the contour. Therefore, we can write

Γµνρ →4π3/2−ǫ Γ(2− 2ǫ)

Γ3(1
2
− ǫ)

∫
[dα]3

(α1α2α3)
1/2−ǫ

(Ω2)2−2ǫ

[
η̂µν(α1x

ρ
13 + α2x

ρ
23)+

+ η̂νρ(α2x
µ
21 + α3x

µ
31) + η̂ρµ(α1x

ν
12 + α3x

ν
32)
]

(D.4)

Introducing the notation

Ii =
4π3/2−ǫ Γ(2− 2ǫ)

Γ3(1
2
− ǫ)

∫
[dα]3

(α1α2α3)
1/2−ǫ αi

(Ω2)2−2ǫ (D.5)

we rewrite the last expression as

Γµνρ → η̂µν(I1x
ρ
13 + I2x

ρ
23) + η̂νρ(I2x

µ
21 + I3x

µ
31) + η̂ρµ(I1x

ν
12 + I3x

ν
32) (D.6)

and insert it in eq. (D.1).

We stress that the metric tensor appearing here is a D–dimensional metric, being

it produced from the evaluation of a D–dimensional tensor integral. Caution is then

required when contracting it with ενρσ. As discussed in the main text, a safe prescription

is to get rid of products of Levi–Civita tensors in favour of three–dimensional metric

tensors and then use identities (2.8).

To this end, we rewrite the spinorial structure (η2γµη̄3) in eq. (D.1) with the help

of identity (B.13). It is easy to realize that the first two terms in this equation do not

contribute in (D.1) due to the planarity of the contour. From the third term, collecting

everything, we obtain

(D.1) =− 2i

(η2η̄3)
εµαβ ενρσ ẋ

ν
1 ẋ

α
2 ẋ

β
3×

[
η̂σµ(I1x

ρ
12 + I3x

ρ
32 + I1x

ρ
13 + I2x

ρ
23) + 2η̂ρµ(I2x

σ
21 + I3x

σ
31)
]

(D.7)
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It is now easy to use identity (2.9) to trade the product of the two ε tensors with

products of three dimensional metric tensors. Applying the rules (2.8) and using the

explicit realization of η spinors and the parametrization of the curve, after some work,

we obtain

(η2γµη̄3) ενρσẋ
ν
1 (Γ

σρµ + Γσµρ) =
2i(D − 2)

(η2η̄3)
(ẋ2ρ ẋ1 · ẋ3 − ẋ3ρ ẋ1 · ẋ2) (xρ12 + xρ13) I(x)

= −4(D − 2) sin τ23
2

[
sin2 τ12

2
+ sin2 τ13

2

]
I(x) (D.8)

where τij = τi − τj and we have defined I(x) ≡ I1 + I2 + I3 with Ii given in (D.5).

We stress that the appearance of an overall factor (D − 2) = (1 − 2ǫ) is the result of

applying the DRED prescription (2.8).

Thanks to the condition α1+α2+α3=1 coming from the delta function inside the

measure, the explicit expression of the I(x) integral reads

I(x) =
4π3/2−ǫ Γ(2− 2ǫ)

Γ3(1
2
− ǫ)

∫
[dα]3

(α1α2α3)
1/2−ǫ

(Ω2)2−2ǫ (D.9)

Performing a Mellin–Barnes transformation we obtain

I(x) =
(1− 2ǫ)3

2π

π
5
2
−ǫ

Γ3
(
3
2
− ǫ
)
Γ
(
1
2
+ ǫ
)
∫

du dv

(2πi)2
Γ (−u) Γ (−v) Γ

(
−u− 1

2
+ ǫ

)

Γ

(
−v − 1

2
+ ǫ

)
Γ

(
3

2
− ǫ+ u+ v

)
Γ (2− 2ǫ+ u+ v)

(x212)
u(x223)

v

(x213)
u+v+2−2ǫ

=2−2+4ǫ π
3
2
−ǫ

Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
)
∫

du dv

(2πi)2
Γ (−u) Γ (−v) Γ

(
−u − 1

2
+ ǫ

)

Γ

(
−v − 1

2
+ ǫ

)
Γ

(
3

2
− ǫ+ u+ v

)
Γ (2− 2ǫ+ u+ v)

(
sin2 τ12

2

)u (
sin2 τ23

2

)v
(
sin2 τ13

2

)u+v+2−2ǫ

(D.10)

E. Evaluation of uncontracted integrals

In this Appendix we give the details for the evaluation of the integral in eq. (7.13)

arising as part of diagram 2(f).

We first concentrate on the parametric J –integral defined in eq. (7.14). Performing

the shift of integration variables τ3 → τ3 + τ1, τ2 → τ2 + τ1 and exploiting the 2π-

periodicity of the integrand as a function of (τ2, τ3) it can be rewritten as

J (α, β, γ) = 2π

∫ 2π

0

dτ2

∫ 2π

0

dτ3

[
sin2

(τ2
2

)]α [
sin2

(τ23
2

)]β [
sin2

(τ3
2

)]γ
(E.1)
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where the 2π factor comes from the trivial integration over τ1. The remaining integra-

tions can be carried out by using the procedure described in Appendix C. Writing the

trigonometric functions in terms of exponentials, expanding them as series and inte-

grating term by term we end up with triple series. Imposing reality of the result for α,

β and γ real, we obtain

J (α, β, γ) = 2π
∞∑

l=0

∞∑

m=0

∞∑

n=0

2−2(α+β+γ)Γ(l − 2α)Γ(m− 2β)Γ(n− 2γ)

Γ(−2α)Γ(−2β)Γ(−2γ)Γ(l + 1)Γ(m+ 1)Γ(n+ 1)
(

cos(π(α− β − γ))

(−α + β + l −m)(−β − γ +m+ n)
− cos(π(α + β − γ))

(−α − β + l +m)(−β + γ +m− n)

− cos(π(α− β + γ))

(−α + β + l −m)(−α− γ + l + n)
+

cos(π(α− β + γ))

(−α− γ + l + n)(−β + γ +m− n)

− cos(π(α+ β + γ))

(−α− β + l +m)(−α − γ + l + n)
− cos(π(α+ β + γ))

(−α− γ + l + n)(−β − γ +m+ n)

)

(E.2)

The six series can be evaluated and the result reads

J (α, β, γ) = 2π
(√

π Γ
(
α + 1

2

)
Γ
(
γ + 1

2

)
Γ(−α− β) cos(π(α+ β − γ))Γ(α+ β + γ + 1)

sin(π(β − γ))Γ
(
1
2
− β

)
Γ(α+ γ + 1)Γ(β + γ + 1)

+

−
√
π Γ
(
α + 1

2

)
Γ
(
β + 1

2

)
Γ(−α− γ) cos(π(α− β + γ))Γ(α+ β + γ + 1)

sin(π(β − γ))Γ
(
1
2
− γ
)
Γ(α + β + 1)Γ(β + γ + 1)

+

√
π Γ
(
β + 1

2

)
Γ
(
γ + 1

2

)
Γ(−α − γ) cos(π(α− β + γ))Γ(α + β + γ + 1)

sin(π(α− β))Γ
(
1
2
− α

)
Γ(α + β + 1)Γ(β + γ + 1)

+

−
√
π Γ
(
α + 1

2

)
Γ
(
γ + 1

2

)
Γ(−β − γ) cos(π(α− β − γ))Γ(α+ β + γ + 1)

sin(π(α− β))Γ
(
1
2
− β

)
Γ(α+ β + 1)Γ(α+ γ + 1)

+

− Γ
(
α+ 1

2

)
Γ
(
β + 1

2

)
Γ(−α− γ)Γ(−β − γ) cos(π(α + β + γ))Γ(α + β + γ + 1)√

πΓ
(
1
2
− γ
)
Γ(α+ β + 1)

+

−Γ
(
β + 1

2

)
Γ
(
γ + 1

2

)
Γ(−α− β)Γ(−α− γ) cos(π(α + β + γ))Γ(α+ β + γ + 1)√

πΓ
(
1
2
− α

)
Γ(β + γ + 1)

)

(E.3)

After non–trivial cancellations we obtain

J (α, β, γ) = 8π3/2 Γ(
1
2
+ α)Γ(1

2
+ β)Γ(1

2
+ γ)Γ(1 + α + β + γ)

Γ(1 + α+ γ)Γ(1 + β + γ)Γ(1 + α + β)
(E.4)
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We note that in all the six J integrals appearing in the combination (7.13), the param-

eters satisfy α + β + γ = −1
2
+ 2ǫ. This allows to express for instance γ as a function

of α and β, leading to expressions which depend only on the choice of two parameters.

The six different contributions are then obtained by choosing α to be u, u+ 1
2
or u+1

and β to be v, v + 1
2
or v + 1 in different combinations. What is relevant to observe is

that in all the cases no ambiguous products of Gamma functions appear.

Plugging expressions (E.4) with these choices of the parameters into the contribu-

tion (7.13), the result can be expressed as

Uf = −24ǫ+2π3−ǫ(1− 2ǫ)Γ
(
1
2
+ 2ǫ

)

3 Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
)

[
G(1, 1

2
) +G(1

2
, 1) (E.5)

+G(1, 0) +G(0, 1) +G(1
2
, 0) +G(0, 1

2
)
]

in terms of the Mellin–Barnes integrals

G(i, j) =

∫
du dv

(2πi)2
Γ(−u)Γ(−v)Γ

(
−u+ǫ− 1

2

)
Γ
(
−v+ǫ− 1

2

)
Γ(u+v−2ǫ+2)

× Γ
(
u+v−ǫ+ 3

2

)
Γ
(
i+ u+ 1

2

)
Γ
(
j + v + 1

2

)
Γ(−i− j − u− v + 2ǫ)

Γ
(
−i− u+ 2ǫ+ 1

2

)
Γ
(
−j − v + 2ǫ+ 1

2

)
Γ(i+ j + u+ v + 1)

(E.6)

However, using the change of variables (u→ −u− v + 2ǫ− 2, v → v), (v → −u− v +

2ǫ− 2, u → u) and u ↔ v, it is not difficult to show that the six G(a, b) functions are

indeed all equal. Therefore, we can write

Uf = −24ǫ+3 π3−ǫ(1− 2ǫ)Γ
(
1
2
+ 2ǫ

)

Γ3
(
1
2
− ǫ
)
Γ
(
1
2
+ ǫ
) G(1, 1

2
) (E.7)

with

G(1, 1
2
) =

∫
du dv

(2πi)2
Γ(−u)Γ(−v)Γ

(
−u+ǫ− 1

2

)
Γ
(
−v+ǫ− 1

2

)
Γ(u+v−2ǫ+2)

× Γ
(
u+v−ǫ+ 3

2

)
Γ
(
u+ 3

2

)
Γ(v + 1)Γ

(
−u− v + 2ǫ− 3

2

)

Γ
(
u+ v + 5

2

)
Γ
(
−u+ 2ǫ− 1

2

)
Γ(2ǫ− v)

(E.8)

First we expand the integral in powers of ǫ up to finite order, which gives a one–fold

and a two–fold Mellin–Barnes integrals. The former integral reads
√
π

ǫ

∫
du

2πi
Γ

(
−u− 1

2

)
Γ(−u)Γ(u+ 1)Γ

(
u+

3

2

)(
ǫψ(0)

(
−u− 1

2

)
− ǫψ(0)(u+ 1)

−2ǫψ(0)

(
u+

3

2

)
+ γEǫ+ 1

)

(E.9)
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where ψ(0) is the digamma function defined in (G.1). It can be evaluated applying

Barnes first lemma and we obtain

π3/2

2

(
1

ǫ
− 2 + 3γE + 4 log 2

)
(E.10)

The latter integral is

∫
du dv

(2πi)2
Γ∗
(
−u − 3

2

)
Γ
(
u+ 3

2

)
Γ(u+ 2)Γ

(
−v − 1

2

)
Γ(v + 1)Γ

(
u− v + 3

2

)
Γ(v − u)

Γ
(
u+ 5

2

)

(E.11)

where, according to the notations of [46], asterisks denote how many of the first right

(left) poles of the Gamma functions have to be considered left (right).

With a change of variables and applying Barnes first lemma this can be reduced

to a one–fold integral

π

2

∫
du

2πi
Γ∗

(
−u− 3

2

)
Γ

(
−u− 1

2

)
Γ

(
u+

3

2

)
Γ(u+ 2) (E.12)

The remaining integral is evaluated by lemma (D.3) of [46] and gives

π3/2 (−1 + log 2) (E.13)

Summing all the contributions we obtain

G(1, 1
2
) =

π3/2

2

(
1

ǫ
− 4 + 3γE + 6 log 2

)
(E.14)

and, consequently

Uf = 4π3

(
−1

ǫ
+ 6 + γE − 2 log 2 + log π

)
(E.15)

F. Evaluation of the contracted integrals

Here we solve the parametric integrals appearing in eq. (7.21) for the contracted

integrals Cf from diagram 2(f).

1) We start with the first integral

I(F.1) = −24ǫ−3

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3
sin(τ13)(

sin
(
τ12
2

)
sin
(
τ23
2

))2−2ǫ (F.1)
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where the overall factor in front has been introduced for later convenience.

Applying the procedure of the previous Section, in particular already removing the

imaginary part, we turn it into a combination of series

I(F.1) =2π sin(2πǫ)
(
S1,1,0[2− ǫ, 2− ǫ]− S1,1,0[−ǫ,−ǫ]

)
+

+ 2 (1− cos(2πǫ))
(
S1,2,0[2− ǫ, 2− ǫ]− S1,2,0[−ǫ,−ǫ]

)
(F.2)

where we have defined

Sm,n,p[a, b] =
∞∑

u=0

∞∑

v=0

Γ(u− 2ǫ+ 2)Γ(v − 2ǫ+ 2)

Γ(u+ 1)Γ(v + 1)Γ2(2− 2ǫ)

1

(u+ a)m(v + b)n(u+ v + a + b)p

(F.3)

Using

S1,1,0[a, b] =
Γ(a)Γ(b)Γ2(−1 + 2ǫ)

Γ(a+ 2ǫ− 1)Γ(b+ 2ǫ− 1)

S1,2,0[a, b] = S2,1,0[b, a] =
Γ(a)Γ(b)Γ2(−1 + 2ǫ)

(
ψ(0)(b+ 2ǫ− 1)− ψ(0)(b)

)

Γ(a + 2ǫ− 1)Γ(b+ 2ǫ− 1)
(F.4)

after some algebra we obtain

I(F.1) =
8π2(ǫ− 1)ǫ(2ǫ− 1)Γ2(−1 + 2ǫ)

Γ4(1 + ǫ)
(F.5)

2) We then move to the second integral appearing in eq. (7.21)

I(F.6) = 24ǫ−3

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3
sin(τ12)(

sin
(
τ13
2

)
sin
(
τ23
2

))2−2ǫ (F.6)

Turning it into series and discarding the imaginary part gives

I(F.6) =2π sin(2πǫ)
(
S1,0,1[−ǫ, 2− ǫ]− S1,0,1[2− ǫ,−ǫ]

)
+

+ (1− cos(2πǫ))
(
S1,2,0[2− ǫ,−ǫ]− S2,1,0[2− ǫ,−ǫ]

)
(F.7)

Summing the S1,0,1 series we find

S1,0,1 = S1,1,0[a, b]−
Γ(b)Γ(−1 + 2ǫ)Γ(a + b)

Γ(b+ 1)Γ(a+ b+ 2ǫ− 1)
3F2

[
b, a + b, 2− 2ǫ

b+ 1, a+ b+ 2ǫ− 1
; 1

]
(F.8)
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Therefore, the final result for this integral reads

I(F.6) =
2π2

2− ǫ
3F2

[
2− 2ǫ, 2− 2ǫ, 2− ǫ

1, 3− ǫ
; 1

]
+

+
2π2

ǫ
3F2

[
2− 2ǫ, 2− 2ǫ,−ǫ

1, 1− ǫ
; 1

]
+

4π sin(πǫ)Γ(2− ǫ)Γ(2ǫ)Γ(−1 + 2ǫ)

Γ3(1 + ǫ)
(F.9)

It turns out that expanding the third integrand in eq. (7.21)

I(F.6)b = 24ǫ−3

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3
sin(τ23)(

sin
(
τ12
2

)
sin
(
τ13
2

))2−2ǫ (F.10)

and performing the integrations term by term we obtain exactly the result (F.7). There-

fore, the third integral simply contributes in doubling the previous result.

3) Next we turn to the sum of the integrals

I(F.11) = −24ǫ−1

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 × (F.11)

(
sin
(
τ23
2

)
(
sin
(
τ12
2

)
sin
(
τ13
2

))1−2ǫ +
sin
(
τ13
2

)
(
sin
(
τ12
2

)
sin
(
τ23
2

))1−2ǫ +
sin
(
τ12
2

)
(
sin
(
τ13
2

)
sin
(
τ23
2

))1−2ǫ

)

corresponding to the second line in eq. (7.21).

Although these integrals can be solved separately with the technique previously

described, it turns out to be more convenient to consider their sum, as it leads to a

considerable technical simplification.

First of all, given the particular domain of integration, the arguments τij/2 of the

trigonometric functions are always bounded between 0 and π. This allows to trade any

expression sin
(τij

2

)
for sin

(
|τij |

2

)
. Now, the crucial observation is that, when rewritten

in this form, the sum in (F.11) turns out to be totally symmetric under any exchange

of the τi parameters. Therefore, we can symmetrize the integration contours as
∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 →
1

3!

∫ 2π

0

dτ1

∫ 2π

0

dτ2

∫ 2π

0

dτ3 (F.12)

As a consequence, the three separate integrals in eq. (F.11) become the same integral.

Taking into account an overall factor 3, we can then write

I(F.11) = −24ǫ−2

∫ 2π

0

dτ1

∫ 2π

0

dτ2

∫ 2π

0

dτ3
sin
(

|τ23|
2

)

(
sin
(

|τ12|
2

)
sin
(

|τ13|
2

))1−2ǫ (F.13)
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Performing the shift of integration variables τ3 → τ3+τ1 and τ2 → τ2+τ1 and exploiting

the 2π-periodicity of the integrand as a function of τ2, τ3 we finally arrive to

I(F.11) = −24ǫ−1π

∫ 2π

0

dτ2

∫ 2π

0

dτ3
sin
(

|τ23|
2

)

(
sin
(

|τ2|
2

)
sin
(

|τ3|
2

))1−2ǫ (F.14)

The remaining integrals can be solved with the method of Appendix C and the result

is simply

I(F.11) = −π
3/224ǫ+1Γ

(
1
2
+ 2ǫ

)

ǫ2Γ(2ǫ)
(F.15)

4) Finally we consider the following combinations

I(F.16) = 24ǫ−2

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 × (F.16)

(
cos
(
τ23
2

)

sin2−2ǫ
(
τ12
2

)
sin1−2ǫ

(
τ13
2

) + cos
(
τ23
2

)

sin1−2ǫ
(
τ12
2

)
sin2−2ǫ

(
τ13
2

) − cos
(
τ13
2

)

sin1−2ǫ
(
τ12
2

)
sin2−2ǫ

(
τ23
2

)
)

and

I(F.17) = 24ǫ−2

∫ 2π

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 × (F.17)

(
cos
(
τ12
2

)

sin2−2ǫ
(
τ13
2

)
sin1−2ǫ

(
τ23
2

) + cos
(
τ12
2

)

sin1−2ǫ
(
τ13
2

)
sin2−2ǫ

(
τ23
2

) − cos
(
τ13
2

)

sin2−2ǫ
(
τ12
2

)
sin1−2ǫ

(
τ23
2

)
)

appearing in the third and fourth lines of eq. (7.21), respectively. Expanding the

integrands in power series, it is easy to realize that these integrals give pairwise the

same results. Therefore, it is sufficient to evaluate one of the two combinations.

In principle, each integral in (F.16) could be performed separately. However, once

again the sum turns out to be far simpler to compute than the individual pieces, this

time due to considerable cancellations which involve the most difficult parts of the

series.

After a quite cumbersome algebra and many intermediate cancellations, the final
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expression in terms of series reads

I(F.16) = 2π sin(2πǫ)
(
S̃1,1[1− ǫ, 1− 2ǫ] + S̃1,1[−ǫ, 3− 2ǫ]

−S̃1,1[1− ǫ, 3− 2ǫ]− S̃1,1[−ǫ, 1− 2ǫ]
)

+ (1− cos(2πǫ))
(
− 2 S̃1,2[−ǫ, 1− 2ǫ]− 2 S̃1,2[1− ǫ, 3− 2ǫ]

−S̃2,1[1− ǫ, 3− 2ǫ]− S̃2,1[−ǫ, 1− 2ǫ]
)

+ (1 + cos(2πǫ))
(
− 2 S̃1,2[1− ǫ, 1− 2ǫ]− 2 S̃1,2[−ǫ, 3 − 2ǫ]

+S̃2,1[−ǫ, 3− 2ǫ] + S̃2,1[1− ǫ, 1− 2ǫ]
)

+ S1 + S2 + S3 + S4 (F.18)

where we have defined

S1 =

∞∑

u=0

∞∑

v=0

16 Γ(u− 2ǫ+ 1)Γ(v − 2ǫ+ 2)

Γ(u+ 1)Γ(v + 1)Γ(1− 2ǫ)Γ(2− 2ǫ)(2u− 2v − 1)(2v − 2ǫ+ 1)2

= −
16
√
πΓ(2ǫ) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 1

2
− ǫ, 1

2
− ǫ

3
2
, 3
2
− ǫ, 3

2
− ǫ

; 1

]

(2ǫ− 1)2Γ
(
−1

2
+ 2ǫ

)

(F.19)

S2 =

∞∑

u=0

∞∑

v=0

16 Γ(u− 2ǫ+ 1)Γ(v − 2ǫ+ 2)

Γ(u+ 1)Γ(v + 1)Γ(1− 2ǫ)Γ(2− 2ǫ)(2u− 2v − 1)(2v − 2ǫ+ 3)2

= −
16
√
πΓ(2ǫ) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 3

2
− ǫ, 3

2
− ǫ

3
2
, 5
2
− ǫ, 5

2
− ǫ

; 1

]

(2ǫ− 3)2Γ
(
−1

2
+ 2ǫ

)

(F.20)

S3 = −
∞∑

u=0

∞∑

v=0

4 Γ(u− 2ǫ+ 1)Γ(v − 2ǫ+ 2) cos(2πǫ)

Γ(u+ 1)Γ(v + 1)Γ(1− 2ǫ)Γ(2− 2ǫ)(u− ǫ)2(2u+ 2v − 4ǫ+ 3)

=

4 cos(2πǫ)Γ
(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ) 4F3

[
1− 2ǫ, 3

2
− 2ǫ,−ǫ,−ǫ

1
2
, 1− ǫ, 1− ǫ

; 1

]

√
πǫ2(4ǫ− 3)

(F.21)
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S4 = −
∞∑

u=0

∞∑

v=0

4 Γ(u− 2ǫ+ 1)Γ(v − 2ǫ+ 2) cos(2πǫ)

Γ(u+ 1)Γ(v + 1)Γ(1− 2ǫ)Γ(2− 2ǫ)(u− ǫ+ 1)2(2u+ 2v − 4ǫ+ 3)

=

4 cos(2πǫ)Γ
(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ) 4F3

[
1− 2ǫ, 3

2
− 2ǫ, 1− ǫ, 1− ǫ

1
2
, 2− ǫ, 2− ǫ

; 1

]

√
π(ǫ− 1)2(4ǫ− 3)

(F.22)

and

S̃m,n[a, b] =

∞∑

u=0

∞∑

v=0

2Γ(u− 2ǫ+ 1)Γ(v − 2ǫ+ 2)

Γ(u+ 1)Γ(v + 1)Γ(1− 2ǫ)Γ(2− 2ǫ)

1

(u+ a)m(2v + b)n
(F.23)

In particular, we need the following sums

S̃1,1[a, b] =
2Γ(a)Γ

(
b+2
2

)
Γ(2ǫ)Γ(−1 + 2ǫ)

bΓ(a + 2ǫ)Γ
(
b
2
+ 2ǫ− 1

)

S̃1,2[a, b] =
2(ǫ− 1)Γ(−2 + 2ǫ)Γ(2ǫ)Γ(a)Γ

(
b+2
2

) (
ψ(0)

(
b
2
+ 2ǫ− 1

)
− ψ(0)

(
b
2

))

bΓ(a+ 2ǫ)Γ
(
b
2
+ 2ǫ− 1

)

S̃2,1[a, b] =
2Γ(2ǫ)Γ(−1 + 2ǫ)Γ(a)Γ

(
b+2
2

) (
ψ(0)(a+ 2ǫ)− ψ(0)(a)

)

bΓ(a + 2ǫ)Γ
(
b
2
+ 2ǫ− 1

) (F.24)

from which we obtain

I(F.16) =
4 cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

π(4ǫ− 3)ǫ2
4F3

[
1− 2ǫ, 3

2
− 2ǫ,−ǫ,−ǫ

1
2
, 1− ǫ, 1− ǫ

; 1

]

+
4 cos(2πǫ)Γ

(
5
2
− 2ǫ

)
Γ(−1 + 2ǫ)√

π(4ǫ− 3)(ǫ− 1)2
4F3

[
1− 2ǫ, 3

2
− 2ǫ, 1− ǫ, 1− ǫ

1
2
, 2− ǫ, 2− ǫ

; 1

]

−
16
√
πΓ(2ǫ) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 1

2
− ǫ, 1

2
− ǫ

3
2
, 3
2
− ǫ, 3

2
− ǫ

; 1

]

(2ǫ− 1)2Γ
(
−1

2
+ 2ǫ

)

−
16
√
πΓ(2ǫ) 4F3

[
3
2
− 2ǫ, 2− 2ǫ, 3

2
− ǫ, 3

2
− ǫ

3
2
, 5
2
− ǫ, 5

2
− ǫ

; 1

]

(2ǫ− 3)2Γ
(
−1

2
+ 2ǫ

)

+
π216ǫ csc2(2πǫ)

(
sin2(2πǫ)− 2 cos(2πǫ)

)

ǫ
(F.25)

Finally, combining the results of this Section we obtain expression (7.22) for the con-

tracted integrals. The hypergeometric functions do not have a well–defined expansion

around ǫ = 0 and analytic continuation has to be performed prior expanding in powers

of ǫ. We explained the proper analytical continuation in Section (8).
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G. Useful series

In order to determine explicitly finite order terms in the ǫ–expansions of extended

hypergeometric functions 4F3 appearing in Section 8 we need know the sum of several

series. Most of them can be found in the literature, but there are few that cannot. For

the last ones we have performed an explicit evaluation. The results are listed below.

We use the standard definition for the derivatives of the Γ function

ψ(n)(z) =
dn+1

dzn+1
log Γ(z) (G.1)

The following results are useful

∞∑

n=1

ψ(1)(1
2
+ n)

n(n− 1
2
)

= 4π2 log 2− 21ζ(3) (G.2)

∞∑

n=1

ψ(1)(−1
2
+ n)

n(n + 1
2
)

= 7ζ(3) + 4− 16 log 2 + π2(3− 4 log 2) (G.3)

∞∑

n=2

ψ(1)(−1 + n)

n(n− 1
2
)

= 3ζ(3)− 14 + 16 log 2 (G.4)

∞∑

n=1

ψ(1)(1 + n)

n(n+ 1
2
)

=
2

3
π2 − 5ζ(3) (G.5)
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