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Abstract: We revisit the computation of the two–loop light–like tetragonal Wilson

loop for three dimensional pure Chern–Simons and N = 6 Chern–Simons–matter the-

ory, within dimensional regularization with dimensional reduction scheme. Our exami-

nation shows that, contrary to prior belief, the result respects maximal transcendental-

ity as is the case of the four–point scattering amplitude of the theory. Remarkably, the

corrected result matches exactly the scattering amplitude both in the divergent and in

the finite parts, constants included.
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1. Preliminaries

Wilson loops are important non–local operators in any gauge theory. In three dimen-

sions they play a central role in that their expectation values and correlation functions

constitute the main observables of Chern–Simons theories.

In this note we will focus on Wilson loops evaluated on a light–like polygonal con-

tour, which display remarkable properties. In particular, they develop UV divergences

due to the cusps in the contour, which get strengthened by the on–shell conditions on

the edges. These divergences are controlled by a rather universal and ubiquitous quan-

tity, the cusp anomalous dimension, which also governs the leading IR singularities of

scattering amplitudes of massless particles and the anomalous dimensions of high–spin

operators.

In N = 4 SYM, light–like Wilson loops exhibit even more interesting features, as it

has been observed that, loop by loop, not only their UV divergent part maps to the IR

divergent part of scattering amplitudes, but also their finite non–constant contributions

match [1]–[4]. This equivalence is achieved by writing particle momenta in scattering

amplitudes in terms of dual variables pi = xi+1 − xi, which are then identified with

the ordinary space–time coordinates of Wilson loops. Under this transformation ordi-

nary conformal invariance of Wilson loops is mapped into the so–called dual conformal

invariance of scattering amplitudes.

The Wilson loops/scattering amplitudes duality has a profound meaning at strong

coupling. In this regime, scattering in N = 4 SYM was studied via the AdS/CFT

correspondence, where dual coordinates emerge as a T–duality transformation and the

– 1 –



computation of the amplitude is mapped to that of a Wilson loop with a light–like

polygonal shape [5]. Moreover, the duality has a deep explanation in terms of the

invariance of the dual superstring model under a combination of bosonic and fermionic

T–dualities [6, 7].

All known perturbative results for scattering amplitudes and light–like Wilson loops

in N = 4 SYM respect the maximal transcendentality principle [8], first formulated

for the anomalous dimensions of twist–2 operators [8]–[11]. In the case of scattering

amplitudes and Wilson loops computed using the dimensional reduction scheme, this

principle states that assigning transcendentality (−1) to the dimensional regularization

parameter ǫ, the l–loop correction to such observables exhibits uniform transcendental-

ity 2l. More generally, the principle has been proved to be satisfied by other quantities

in N = 4 SYM, like for instance the Sudakov form factor [12]. This leads to specu-

late that the principle might be related to intrinsic properties of the master integrals

that appear in this theory [11]. In particular, for planar scattering amplitudes max-

imal transcendentality seems to be a property of dual conformally invariant integrals

appearing in their loop computation.

It is certainly interesting to investigate whether such a remarkable property is

shared by other theories in different dimensions and/or with a different amount of

supersymmetry. In this note we will address this question for pure Chern–Simons

theories in three dimensions and for the N = 6 Chern–Simons–matter theory (ABJM)

introduced in [13].

Known results for tree amplitudes in ABJM [14, 15] signal the presence of dual

superconformal [16]–[18] and Yangian [19] symmetry. By using a three–dimensional

version of BCFW recursion relations [20] these properties could be extended to pla-

nar loop integrands. In fact, the two–loop four point amplitude [21, 22] and one–loop

amplitudes [23, 24] can be written as linear combinations of dual conformally invari-

ant integrals. Notably, the corresponding results exhibit maximal transcendentality.

Perturbative results on form factors in ABJM are going to appear [25], exhibiting this

property too. On the other hand, N = 8 SYM in three dimensions violates the maxi-

mal transcendentality principle. In fact, its two–loop four–point scattering amplitude

contains terms of non–uniform transcendentality [26]. This is probably connected to

the fact that the integrals in this theory are just dual conformally covariant but not

invariant [27].

Light–like Wilson loops in three–dimensional Chern–Simons theories with and

without matter have been computed in perturbation theory up to two loops. In [28]

their expectation value has been found to vanish at one loop for polygonal contours

with any number of edges. In [29] the authors have derived an expression for the two

loop correction to the four cusps Wilson loop in pure Chern–Simons and in ABJM
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theory, which has been later extended to all points [30].

In three dimensions, strong arguments in support of dual superconformal symmetry

and Wilson loops/scattering amplitudes are still lacking. In fact, at strong coupling

it is not yet clear how to implement the fermionic T–duality invariance of the ABJM

dual string background [31]–[37]. At weak coupling, despite a number of results on

higher–point amplitudes has been found in [23, 24, 38, 39], it is not clear yet how the

duality might work, since for more than four external particles the amplitudes cease to

be MHV 1.

The four cusps Wilson loop in ABJM is nonetheless special since it has been dis-

covered to match the non–constant part of the two–loop four–point amplitude [21, 22,

40, 41]. This is a hint that a Wilson loop/scattering amplitude duality might work

even for ABJM.

However, a puzzle already highlighted in [29] arises for what concerns maximal

transcendentality: The Wilson loop result fails to be maximally transcendental due

to a residual (log 2) term appearing in the constant, which cannot be reabsorbed into

a redefinition of the regularization scale. On the contrary, the four–point amplitude

seems to enjoy dual conformal symmetry and respects the maximal transcendentality

principle. Therefore, it would be quite inexplicable if the dual Wilson loop were not

maximally transcendental.

It is the purpose of this note to tackle and solve this puzzle. We will argue

that the problem resides in the regularization of a divergent integral associated to

a gauge three–vertex diagram. After regularizing it by dimensional regularization in

dimensional reduction scheme (DRED) and treating properly the contractions between

three–dimensional and d–dimensional objects, we find that maximal transcendentality

is restored, opening the possibility that this property can hold for pure Chern–Simons

and ABJM, as well.

2. Regularization

We will be primarily interested in the evaluation of a light–like Wilson loop in pure

U(N) Chern–Simons theory 2

〈W4〉CS =
1

N

〈

TrP exp i

∮

C

Aµdx
µ

〉

(2.1)

1In three dimensions there is no notion of helicity. However, the name MHV (Maximally-Helicity-

violating) is commonly used in analogy to N = 4 SYM amplitudes.
2We refer to [29] for notations, conventions and Feynman rules.
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and of the analogous object for U(N)× U(N) ABJM theory

〈W4〉ABJM =
1

2N

〈

TrP exp i

∮

C

Aµdx
µ + T̂rP exp i

∮

C

Âµdx
µ

〉

(2.2)

where C is a tetragon with edges pµi ≡ xµ
i+1 − xµ

i , i = 1, · · · , 4 satisfying p2i = 0.

Perturbative evaluation suffers from short distance divergences arising near the

cusps. A widely used method for regularizing integrals is based on analytical contin-

uation of the space–time dimensions. In supersymmetric theories the most convenient

scheme is dimensional regularization with dimensional reduction [42], where Feynman

rules are given in integer dimensions n, the spinorial and tensorial algebras involving

objects like γ matrices and Levi–Civita ε tensors are performed strictly in n dimen-

sions, whereas momentum integrals are continued to complex d = n− 2ǫ. This scheme

has been applied to three–dimensional Chern–Simons theories with and without matter

and has been proved to be consistent with the gauge invariance and supersymmetry

of the theory [43]. Recently, this prescription has been also shown to reproduce the

results coming from localization for the case of 1/2 BPS circular Wilson loops in ABJM

theory [44].

Care has to be taken when contracting objects of different dimensionality, specif-

ically three–dimensional objects coming from Feynman rules with d–dimensional ten-

sors arising from tensorial integrals. DRED scheme assigns the following rules [45]

for contracting three–dimensional metrics ηµν (we consider Lorentzian signature ηµν =

diag(1,−1,−1)) and d–dimensional ones η̂µν

ηµνηµν = 3 η̂µν η̂µν = 3− 2ǫ ηµν η̂νρ = η̂µρ (2.3)

Analogously, vectors pµi coming from integrals have to be thought as being d–dimensional

vectors, so that unambiguous rules are applied for contractions pµi pj µ and pµi η̂µν or

pµi ηµν .

A concern may arise, instead, when contracting d–dimensional metric tensors with

Levi–Civita tensors which cannot be defined outside three dimensions. Usually, two

possible strategies for overcoming the problem can be used: Either tensor algebra is

performed until one reaches a situation where only scalar integrals survive [43], or one

applies algebraic identities in order to get rid of all ε tensors.

In the following, we will adopt the second strategy to compute tetragonal Wilson

loops (2.1, 2.2).

3. The computation

As discussed in [29, 28], the expressions (2.1, 2.2) vanish at one–loop. Therefore, the

first non–trivial contribution appears at two loops.
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In the planar limit, the only non–vanishing diagrams for the two–loop Wilson loop

in pure Chern–Simons theory are associated to ladder and three–vertex topologies given

in Fig. 1.

While the ladder diagrams are fi-

(a) (b)

Figure 1: Gauge contributions.

nite and can be computed directly in

three dimensions, divergent integrals

appear from diagrams of the type 1(b),

which have then to be dimensionally

regularized. Consequently, they suffer

from regularization ambiguities due to

the explicit appearance of ε tensors

coming from the cubic vertex and the

gauge propagators.

After some algebra, the contributions from 1(b)–type diagrams can be expressed in

terms of the following integral [29]

I321 =

∫

d3s1,2,3 ε
λµν ερστ p1λ p2µ p

ρ
3 p

σ
2 ∂z1 ν ∂

τ
z3

∫

ddw
(d− 2)−2

(w2)3/2−ǫ [(w − z12)2]
1/2−ǫ [(w − z32)2]

1/2−ǫ
(3.1)

where zi indicate the position on the edge pi, parameterized by si, z
µ
i = xµ

i + pµi si.

The method adopted in [29] consists in first solving the scalar integral by Feynman

parameterization in d dimensions

I321 = i πd/2 Γ (d− 2)

Γ (3d/2− 2)

1

(d− 2)2

∫

[dβ]3 d
3s1,2,3 ε

λµν ερστ p1λ p2µ p
ρ
3 p

σ
2 ∂z1 ν ∂

τ
z3

1

∆d−2

(3.2)

where (zµij ≡ zµi − zµj , β̄i = 1− βi)

∆ = 2 β1 β3 (z12 · z32)− z212 β1 β̄1 − z232 β3 β̄3 (3.3)

∫

[dβ]3 ≡

∫ 1

0

dβ1 dβ2 dβ3 (β1β2β3)
(d−2)/2−1 β2 δ

(

∑

i

βi − 1

)

Γ(3d
2
− 2)

Γ(d
2
)Γ(d

2
− 1)2

(3.4)

and then applying the derivatives. It is important to note that, since this is equivalent

to performing the derivatives first and then compute a tensor integral, the derivatives

are to be considered as living in d = (3−2ǫ) dimensions. It follows that the application
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of derivatives yields

∂z1 ν ∂
τ
z3

1

∆d−2
= (3.5)

−(d − 2)

[

2 β1 β3 η̂
τ

ν

∆d−1
− 4(d− 1)

(β1 β3 z32 ν − β1 β̄1 z12 ν)(β1 β3 z
τ
12 − β3 β̄3 z

τ
32)

∆d

]

where the metric appearing in the first term is a d–dimensional metric.

Inserting back into I321, the second term in (3.5), being proportional to external

vectors, can be safely contracted with the product of ε tensors as done in [29], giving

the second piece in formula (3.10) below. In the first term, instead, we have to evaluate

ελµν ερστ η̂
τ

ν p1λ p2µ p
ρ
3 p

σ
2 (3.6)

where contractions of a d–dimensional metric with three–dimensional Levi–Civita ten-

sors appear. To overcome the problem, we can get rid of ε tensors by using the identity

ελµνερστ = δλµν[ρστ ] (3.7)

When applied to our case, all terms containing ηµσ vanish because of the light–cone

condition, p22 = 0. We are then left with

−
(

η̂ρρ − 2
)

ηλσ η
µ
ρ p1λ p2 µ p

ρ
3 p

σ
2 (3.8)

This can be evaluated using the DRED rules (2.3) and gives (2 p1 · p2 ≡ s, 2 p2 · p3 ≡ t)

−
d − 2

4
s t (3.9)

Therefore, the final integral to be computed reads

I321 = i πd/2 Γ(d− 1)

8 Γ3(d/2)
st

∫ 1

0

d3 s1,2,3 d
3 β1,2,3 (β1 β2 β3)

(d−2)/2

δ

(

∑

i

βi − 1

)

(

1

∆d−1
(d− 2)− 2

(d− 1)

∆d
β1 β3 s̄1 s3 (s+ t))

)

(3.10)

We see that this expression differs from the result (B.7) in Ref. [29] by a factor

(d − 2) = (1 − 2ǫ) in the first term. This discrepancy can be traced back to the

application of DRED rules when dealing with ε tensors.

As discussed in [29], the ABJM Wilson loop (2.2) is obtained by adding to the

contributions from diagrams in Fig. 1 two extra contributions drawn in Fig. 2 where

one–loop matter corrections to the gauge propagators appear 3.

3We recall that in DRED the one–loop gauge and ghost corrections cancel exactly [43].
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While the first diagram is finite,

(a) (b)

Figure 2: Matter contributions.

the second one is divergent and re-

quires regularization. The one–loop

correction to the gauge propagator, com-

ing only frommatter contributions, con-

tains ε tensors. However, summing

bosonic and fermionic loops, the index

structure reduces to three dimensional

tensors only and the ε tensor algebra

can be performed unambiguously, as

done in [29].

To summarize, both for the pure Chern–Simons and for the ABJMWilson loops the

only change which arises from a careful application of DRED is confined to the vertex

integral (3.10). In the next Section we discuss the consequences of this mismatch on

the final result for 〈W4〉CS and 〈W4〉ABJM.

4. The result

As described above, revisiting the calculation of [29] by a careful use of DRED does

not lead to any change in the evaluation of two–loop diagrams for planar light–like

Wilson loops, except for the integral (3.10) associated to the vertex diagram in Fig. 1.

Since the integral I321 is 1/ǫ divergent, the evanescent term carried by the extra factor

(d− 2) in (3.10) modifies non–trivially the constant part of the two–loop result, as we

now explain.

The final result for the pure Chern–Simons Wilson loop found in [29] by summing

ladder and vertex contributions reads

〈W4〉
(2)
CS = −

(

N

k

)2
1

4

[

log (2)
4
∑

i=1

(−x2
i,i+2 µ̃

2)2ǫ

ǫ
− 10ζ2 + 8 log (2) + 8 log2 (2)

]

(4.1)

where the regularization scale has been redefined as µ̃2 = µ2πeγE . This result exhibits

a non–maximally transcendental constant 8 log (2). This leads to the speculation that

the heuristic maximal transcendentality principle [8] might not be working for light–like

Wilson loops in Chern–Simons theory.

However, if we now redo the calculation by taking into account the extra factor

(d − 2) in eq. (3.10) it is easy to realize that a further constant contribution −8 log 2

is produced, which exactly cancels the transcendentality-one term in (4.1).

Therefore, using the correct prescription for dealing with Levi–Civita tensors in

DRED, the final expression for the tetragonal Wilson loop in pure Chern–Simons turns
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out to be

〈W4〉CS = 1−

(

N

k

)2
1

4

[

log(2)
4
∑

i=1

(−x2
i,i+2 µ̃

2)2ǫ

ǫ
− 10ζ2 + 8 log2(2) +O(ǫ)

]

+O(k−3)

(4.2)

and is manifestly maximally transcendental.

The same effect occurs in the evaluation of the ABJM Wilson loop. In fact, sum-

ming to the previous result the extra contributions from diagrams in Fig. 2 and re-

defining the mass scale as µ′2 = 8πeγEµ2 in order to avoid the appearance of 1/ǫ poles,

we find

〈W4〉ABJM = 1 +
1

4

(

N

k

)2 [

−
(−µ′2 x2

13)
2ǫ

ǫ2
−

(−µ′2 x2
24)

2ǫ

ǫ2
+ 2 log2

(

x2
13

x2
24

)

+ 16ζ2 + 12 log2(2) +O(ǫ)
]

+O(k−3) (4.3)

We observe that it does have maximal transcendentality, exactly like its analogue in

N = 4 SYM [1, 2, 3] and its dual object, the four–point scattering amplitude [21, 22]. In

particular, expressing the four–point amplitude in terms of dual variables pi = xi+1−xi

and identifying them with the Wilson loop coordinates, the result (4.3) not only matches

the divergent and log2
(

x2
13

x2
24

)

parts of the scattering amplitude, but it also matches its

maximally transcendental constant.

The result we have found opens the possibility that light–like Wilson loops in ABJM

theory could enjoy maximal transcendentality, as it appears to be the case in N = 4

SYM. To test this conjecture, the educated use of DRED that we have applied in the

evaluation of the tetragonal Wilson loop should be extended to n cusped Wilson loops

[30], with effects on the constant part of the result. However, for generic n the analysis

of transcendentality is hampered by the lack of analytical results for the constants.

The correctness of our prescription for dealing with Levi–Civita tensors in DRED

is proved by the fact that it has played a crucial role in the recent computation of 1/2

BPS circular Wilson loops, in particular in matching the perturbative result with the

prediction from localization [44].
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